Show simple item record

Expression Evolution of Mammalian Genes.

dc.contributor.authorLiao, Ben-Yangen_US
dc.date.accessioned2008-08-25T20:56:02Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2008-08-25T20:56:02Z
dc.date.issued2008en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/60816
dc.description.abstractComparing the expression-profiles of over 10,000 genes from the human and mouse genomes, I address fundamental questions on mammalian gene expression. First, I demonstrate that over 80% of human-mouse orthologous genes are evolutionarily conserved in their expression-profiles. This result highlights the importance of proper gene expression to fitness. Second, I show that highly expressed and tissue-specific genes tend to evolve slowly in expression-profile, implying that the expression pattern is of particular importance to highly expressed and tissue-specific genes. I then investigate the potential roles that gene expression plays in protein sequence evolution, dynamics of genome organization, and evolutionary changes of gene essentiality in mammals. My results indicate that tissue-specificity is a stronger determinant on protein evolutionary rate than gene expression level, a factor that is known to be the most important rate determinant in yeasts. The result suggests a great variation in rate determinants of protein sequence evolution between unicellular and multicellular organisms. Subsequently, my analyses on the origin of co-expressed gene clusters indicate that co-expression of linked genes is a form of transcriptional interference that is disadvantageous to organisms, suggesting that transcriptional interference may promote recurrent relocations of genes in the genome. Lastly, I study underlying mechanisms of the evolution of gene essentiality. The results show that the changes of gene essentiality appear to be associated with adaptive evolution at the protein-sequence level, while gene duplication and gene expression evolution plays a negligible role. Together, my studies help understand patterns, mechanisms and consequences of gene expression evolution.en_US
dc.format.extent2687246 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectHumanen_US
dc.subjectMouseen_US
dc.subjectTranscriptomeen_US
dc.subjectGenomeen_US
dc.subjectMolecular Evolutionen_US
dc.subjectGene Regulationen_US
dc.titleExpression Evolution of Mammalian Genes.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineEcology and Evolutionary Biologyen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberZhang, Jianzhien_US
dc.contributor.committeememberQin, Zhaohuien_US
dc.contributor.committeememberTucker, Priscilla K.en_US
dc.contributor.committeememberWittkopp, Patriciaen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/60816/1/liaoby_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.