Show simple item record

Microenvironmental Control in Microfluidic Bioreactors for Long Term Culture of Bone Marrow Cells.

dc.contributor.authorMehta, Geetaen_US
dc.date.accessioned2008-08-25T20:57:13Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2008-08-25T20:57:13Z
dc.date.issued2008en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/60852
dc.description.abstractThe goal of this research is to create in vitro microenvironments for long term culture of hematopoeitic stem cell (HSC) in microfluidic bioreactors. In vivo, HSCs reside in the bone marrow osteoblastic and vascular niches in adult mammals. Defining features of their in vivo niche include: small number of HSCs, heterogeneous population of bone marrow cells that support HSCs, and low oxygen tension. We engineer niche elements in microfluidic bioreactors by modulating oxygen tension, optimizing attachment and growth of HSC-supporting bone marrow stromal cells, and culturing small numbers of HSCs in their physiologically relevant ratios between HSCs and supporting cells. By using a combination of a mathematical model and quantitative experiments, we have created a design tool to manipulate and control oxygen tension for cell culture inside the poly(dimethyl siloxane) (PDMS) microbioreactors. Dissolved oxygen concentrations in the microbioreactor are quantified in real time using fluorescence lifetime imaging of an oxygen sensitive dye. Experimental results are consistent with the mathematical model and give insight into operating conditions required for a desired oxygen tension in cell culture regions of the microbioreactor. We used microfluidic perfusion systems to develop nanocoatings made from electrostatic self assembly of PDDA (poly(diallyldimethyl ammonium chloride)), clay, type IV collagen and fibronectin to optimize attachment of primary murine bone marrow cells (support cells for HSCs) onto PDMS bioreactors. PDDA-topped coatings were found to be cytotoxic, while coatings with two or more bilayers of proteins collagen and fibronectin were found to optimize spreading, proliferation, and viability as compared to other surfaces. On-chip erythropoiesis was achieved with a 3-D co-culture of HSCs with supporting cells in PDMS bioreactors. In addition, an optimal ratio of support cells to HSCs was found to maximize self renewal potential of HSCs in vitro. By the combination of hypoxia (which simulates in vivo bone marrow oxygen tension), biofunctional surfaces, and 3-D co-cultures, we are moving towards a ‘microfluidic HSC niche’, in which hypothesis-driven studies about crosstalk between HSCs and stromal cells can be carried out.en_US
dc.format.extent10807473 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectHematopoietic Stem Cellsen_US
dc.subjectIn Vitro Microfluidic HSC Nichesen_US
dc.subjectOxygen Modulation in Microbioreactorsen_US
dc.subjectPolyelectrolyte Multilayers Inside PDMS Microbioreactorsen_US
dc.subjectThree Dimensional Hematopoietic and Support Cell Cultureen_US
dc.subjectErythropoiesis on a Chipen_US
dc.titleMicroenvironmental Control in Microfluidic Bioreactors for Long Term Culture of Bone Marrow Cells.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBiomedical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberLinderman, Jennifer J.en_US
dc.contributor.committeememberTakayama, Shuichien_US
dc.contributor.committeememberKotov, Nicholasen_US
dc.contributor.committeememberTaichman, Russell S.en_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/60852/1/mehtagee_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.