Show simple item record

Structured Preference Representation and Multiattribute Auctions

dc.contributor.authorEngel, Yagilen_US
dc.description.abstractHandling preferences over multiple objectives (or attributes) poses serious challenges to the development of automated solutions to complex decision problems. The number of decision outcomes grows exponentially with the number of attributes, and that makes elicitation, maintenance, and reasoning with preferences particularly complex. This problem can potentially be alleviated by using a factored representation of preferences based on independencies among the attributes. This work has two main components. The first component focuses on development of graphical models for multiattribute preferences and utility functions. Graphical models take advantage of factored utility, and yield a compact representation for preferences. Specifically, I introduce CUI networks, a compact graphical representation of utility functions over multiple attributes. CUI networks model multiattribute utility functions using the well studied utility independence concept. I show how conditional utility independence leads to an effective functional decomposition that can be exhibited graphically, and how local conditional utility functions, depending on each node and its parents, can be used to calculate joint utility. The second main component deals with the integration of preference structures and graphical models in trading mechanisms, and in particular in multiattribute auctions. I first develop multiattribute auctions that accommodate generalized additive independent (GAI) preferences. Previous multiattribute mechanisms generally either remain agnostic about traders’ preference structures, or presume highly restrictive forms, such as full additivity. I present an approximately efficient iterative auction mechanism that maintains prices on potentially overlapping GAI clusters of attributes, thus decreasing elicitation and computation burden while allowing for expressive preference representation. Further, I apply preference structures and preference-based constraints to simplify the particularly complex, but practically useful domain of multi-unit multiattribute auctions and exchanges. I generalize the iterative multiattribute mechanism to a subset of this domain, and investigate the problem of finding an optimal set of trades in multiattribute call markets, given restrictions on preference expression. Finally, I apply preference structures to simplify the modeling of user utility in sponsored-search auctions, in order to facilitate ranking mechanisms that account for the user experience from advertisements. I provide short-term and long-term simulations showing the effect on search-engine revenues.en_US
dc.format.extent3492179 bytes
dc.format.extent1373 bytes
dc.subjectPreference Handlingen_US
dc.subjectMultiattribute Auctionsen_US
dc.subjectMultiattribute Preferencesen_US
dc.titleStructured Preference Representation and Multiattribute Auctionsen_US
dc.description.thesisdegreedisciplineComputer Science & Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberWellman, Michael P.en_US
dc.contributor.committeememberBaveja, Satinder Singhen_US
dc.contributor.committeememberDurfee, Edmund H.en_US
dc.contributor.committeememberMacKie-Mason, Jeffrey K.en_US
dc.subject.hlbsecondlevelComputer Scienceen_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)

Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.


If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.