Show simple item record

Advances in Modeling and Inference of Neuroimaging Data.

dc.contributor.authorZhang, Huien_US
dc.date.accessioned2009-02-05T19:30:45Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2009-02-05T19:30:45Z
dc.date.issued2008en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/61693
dc.description.abstractFunctional Magnetic Resonance Imaging is a relatively newly developed technique used to study neural activity in the human brain. This dissertation concerns advances in modeling and inference of neuroimaging data and consists of three projects: 1) nonparametric methods for combining different types of image-based test statistics; 2) parametric cluster mass inference via random field theory (RFT); and 3) optimizing the kernel size of the smoothed variance t-test. Neuroimaging inferences are generally based on one of two statistics: cluster extent, the number of voxels within a cluster; and voxel intensity, the maximum voxel intensity in a cluster. In order to leverage the strength from both statistics, some combining methods have been proposed. Cluster mass is defined as the integral of suprathreshold intensities within a cluster. The nonparametric cluster mass inference method is considered a more sensitive method than the partial inference methods. Since the cluster mass statistic naturally combines the information from cluster extent and voxel intensity, and it is the product of cluster extent and suprathreshold average intensity within a cluster, we propose two combining functions using these two statistics within the permutation framework. We also develop a cluster mass inference method based on RFT. It is shown that, for small group studies with 20 or fewer subjects, the smoothed variance t-test increases detection sensitivity and is a powerful alternative to the usual t-test. The reason is that the effective degrees of freedom (EDF) of a variance image will increase if the variance image is smoothed. However, the smoothing procedure induces bias. Although the EDF will increase with increasing smoothing kernel size, an increase in false positive regions may result as well. The purpose of the third part is to increase EDF in order to increase detection sensitivity while avoiding too much bias. In this work, we study the relationship between smoothing, the EDF, mean square error and bias.en_US
dc.format.extent1001722 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectCluster Mass Statisticsen_US
dc.subjectSmoothed Sample Varianceen_US
dc.subjectEffective Degrees of Freedomen_US
dc.subjectCluster Extend (Cluster Size)en_US
dc.subjectSuperathreshold Average Intensityen_US
dc.subjectParametric Inference Methoden_US
dc.titleAdvances in Modeling and Inference of Neuroimaging Data.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBiostatisticsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberJohnson, Timothy D.en_US
dc.contributor.committeememberNichols, Thomas E.en_US
dc.contributor.committeememberFessler, Jeffrey A.en_US
dc.contributor.committeememberNan, Binen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/61693/1/huizhang_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.