Show simple item record

Microbial Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils.

dc.contributor.authorLee, Sung-Wooen_US
dc.date.accessioned2009-02-05T19:32:26Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2009-02-05T19:32:26Z
dc.date.issued2008en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/61713
dc.description.abstractLandfills are one of the major sources of methane (CH4), a potent greenhouse gas with a global warming potential (GWP) ~23 times higher than that of carbon dioxide (CO2). Although some effective strategies have been formulated to prevent methane emissions from large landfills, many landfills allow methane to be freely emitted to the atmosphere. In such situations, it is often proposed to stimulate methanotrophs, a group of bacteria that consume methane, in the cover soil to prevent fugitive methane emissions. Several factors, however, must be addressed to make such a biogenic removal mechanism effective. First, methanotrophic activity can be inhibited by nonmethane organic compounds (NMOCs) that are commonly found in landfill soil gas. Second, although methanotrophs can be easily stimulated with the addition of nitrogenous fertilizers, biogenic production of nitrous oxide with a GWP ~296 times higher than that of carbon dioxide, is also stimulated. To consider these issues, two general areas of research were performed. First, a dimensionless number was developed based on Michaelis-Menten kinetics that describes the effects of the presence of multiple NMOCs on methanotrophic growth and survival. This model was validated via experimental measurements of methanotrophic growth in the presence of varying amounts of NMOCs. Second, the effects of nutrient amendments on methane oxidation and nitrous oxide production were examined by constructing soil microcosms using landfill cover soils. Here, it was shown that the addition of ammonium in the presence of phenylacetylene stimulated methane oxidation but inhibited nitrous oxide production. Furthermore, to understand the methanotrophic community structure and activity in response to these amendments, DNA microarray and transcript analyses were performed. The results indicated the predominance of Type II methanotrophs but that Type I methanotrophs responded more significantly to these amendments. Also, substantial activity of pMMO-expressing methanotrophs was observed, suggesting that these methanotrophs were responsible for nitrous oxide production. Collectively, these data demonstrate that methanotrophic activity and community structure can be differentially affected by both landfill gas composition and amendments, thus providing insights as how best to manipulate methanotrophic processes to better mitigate greenhouse gas emissions.en_US
dc.format.extent1427722 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectMethaneen_US
dc.subjectLandfillsen_US
dc.subjectMethanotrophen_US
dc.subjectNitrous Oxideen_US
dc.titleMicrobial Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineEnvironmental Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberSemrau, Jeremy D.en_US
dc.contributor.committeememberBulkley, Jonathan W.en_US
dc.contributor.committeememberLastoskie, Christian M.en_US
dc.contributor.committeememberZak, Donald R.en_US
dc.subject.hlbsecondlevelCivil and Environmental Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/61713/1/sungwlz_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.