Show simple item record

Neuralprosthetic Devices: Inputs and Outputs.

dc.contributor.authorLudwig, Kip Allanen_US
dc.date.accessioned2009-05-15T15:09:14Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2009-05-15T15:09:14Z
dc.date.issued2009en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/62216
dc.description.abstractPrior studies have demonstrated that the firing rate of cortical neurons can be volitionally modulated by a subject to generate a controllable output signal; this neural output signal can then be manipulated to direct a robotic arm, a cursor on a computer screen, or other interface device. The burgeoning field of neural control has led to a number of innovative applications, known more commonly as neuroprosthetic devices. Neuroprosthetic devices have the potential to return some degree of functionality to the over 250,000 Americans with incapacitating spinal cord injuries, or allow healthy subjects to control electronic devices in their everyday lives. The research presented here consists of three studies focused on improving the current generation of neuroprosthetic devices. In the first study, we introduced and evaluated a Bayesian maximum-likelihood estimation (bMLE) strategy to identify optimized training data for neuroprosthetic devices. By limiting initial decoding assumptions and training only on relevant neural data, accurate neural-control was possible with as few as two neurons, using minimal training data and no a-priori¬ movement measurements for calibration. Moreover, implanted subjects obtained useful prosthetic control using local field potentials and neurons from cingulate cortex as input. In the second study, we refined a method to electrochemically deposit surfactant-templated ordered poly(3,4-ethylenedioxythiophene) (PEDOT) films on the recording sites of standard “Michigan” probes, and evaluated the in vivo efficacy of these modified sites in recording chronic neural activity. PEDOT sites were found to outperform control sites in terms of signal-to-noise ratio and number of viable unit potentials - thereby improving the quality of neural input sources to the neuroprosthetic device. In the third study, we evaluated a technique known as common average referencing (CAR) to generate a more ideal reference electrode for microelectrode recordings. CAR was found to drastically outperform standard types of electrical referencing, reducing noise by more than 30 percent. As a result of the reduced noise floor, arrays referenced to a CAR yielded almost 60 percent more discernible neural units than traditional methods of electrical referencing – again improving the quality of neural input sources to a neuroprosthetic device.en_US
dc.format.extent3338812 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectNeuroprostheticen_US
dc.subjectMicroelectrodeen_US
dc.subjectBMIen_US
dc.subjectConductive Polymeren_US
dc.subjectPEDOTen_US
dc.subjectNeural Recordingsen_US
dc.titleNeuralprosthetic Devices: Inputs and Outputs.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBiomedical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberKipke, Daryl R.en_US
dc.contributor.committeememberAnderson, David J.en_US
dc.contributor.committeememberMartin, David C.en_US
dc.contributor.committeememberMayer, Michaelen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/62216/1/ludwigk_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.