Show simple item record

Understanding Organic Photovoltaic Cells: Electrode, Nanostructure, Reliability, and Performance.

dc.contributor.authorKim, Myung-Suen_US
dc.date.accessioned2009-05-15T15:17:47Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2009-05-15T15:17:47Z
dc.date.issued2009en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/62335
dc.description.abstractMy Ph.D. research has focused on alternative renewable energy using organic semiconductors. During my study, first, I have established reliable characterization methods of organic photovoltaic devices. More specifically, less than 5% variation of power conversion efficiency of fabricated organic blend photovoltaic cells (OBPC) was achieved after optimization. The reproducibility of organic photovoltaic cell performance is one of the essential issues that must be clarified before beginning serious investigations of the application of creative and challenging ideas. Second, the relationships between fill factor (FF) and process variables have been demonstrated with series and shunt resistance, and this provided a chance to understand the electrical device behavior. In the blend layer, series resistance (Rs) and shunt resistance (Rsh) were varied by controlling the morphology of the blend layer, the regioregularity of the conjugated polymer, and the thickness of the blend layer. At the interface between the cathode including PEDOT:PSS and the blend layer, cathode conductivity was controlled by varying the structure of the cathode or adding an additive. Third, we thoroughly examined possible characterization mistakes in OPVC . One significant characterization mistake is observed when the crossbar electrode geometry of OPVC using PEDOT:PSS was fabricated and characterized with illumination which is larger than the actual device area. The hypothesis to explain this overestimation was excess photo-current generated from the cell region outside the overlapped electrode area, where PEDOT:PSS plays as anode and this was clearly supported with investigations. Finally, I incorporated a creative idea, which enhances the exciton dissociation efficiency by increasing the interface area between donor and acceptor to improve the power conversion efficiency of organic photovoltaic cells. To achieve this, nanoimprint lithography was applied for interface area increase. To clarify the effect of the interface area between donor and acceptor, we used two kinds of device structures. One was ITO/thermally deprotectable poly thiophene (TDPTD) /PCBM/Al and the other was ITO/TiO2/P3HT/gold (Au). In both cases, the enhanced device performance depending on the interface area was observed.en_US
dc.format.extent3479149 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectOrganic Photovoltaic Cellen_US
dc.titleUnderstanding Organic Photovoltaic Cells: Electrode, Nanostructure, Reliability, and Performance.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMaterials Science and Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberKim, Jinsangen_US
dc.contributor.committeememberGuo, Lingjieen_US
dc.contributor.committeememberShtein, Maxen_US
dc.contributor.committeememberVan Der Ven, Antonen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/62335/1/myungsu_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.