Show simple item record

Mitigation of Motion Artifacts in Functional MRI: A Combined Acquisition, Reconstruction and Post Processing Approach.

dc.contributor.authorPandey, Kiran Kumaren_US
dc.date.accessioned2009-05-15T15:25:55Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2009-05-15T15:25:55Z
dc.date.issued2009en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/62439
dc.description.abstractHead motion limits the accuracy, specificity and sensitivity of fMRI. Rigid body registration of fMRI data only corrects for bulk movements while leaving secondary motion artifacts from spin history effects, dynamic field inhomogeneity changes and interpolation errors untouched. Secondary artifacts reduce accuracy of image registration, increase variance in fMRI time-series and reduce sensitivity of detection of active voxels. In this thesis, some approaches to increase robustness of fMRI to head motion have been presented. These involve explicit optimization of acquisition parameters, use of image acquisition and reconstruction methods that reduce secondary motion artifacts and, better isolation and removal of residual motion artifacts that remain after image realignment. Specifically, methods to mitigate motion artifacts include use of thinner slices and slices of variable thickness during image acquisition for better signal recovery in brain regions with large intra-voxel dephasing induced signal loss. A combined forward and reverse spiral k-space trajectory was used to reduce susceptibility artifacts in presence of motion. Iterative image reconstruction with dynamically updated fieldmaps was used to correct temporally changing field inhomogeneity from motion and susceptibility interactions. Results demonstrated that these corrective measures increased the overall robustness of fMRI to susceptibility induced field inhomogeneity, head motion, and dynamic interactions between them. Consequently, better quality of fMRI data also improved the quality of motion correction, reduced variance in the time-series and increased sensitivity of detection of active voxels during fMRI experiments with head movement. Constrained Independent Component Analysis (cICA) was used for modeling, isolation and removal of residual motion artifacts that remain in fMRI time-series despite image registration. cICA was found to be better able to isolate the residual errors compared to the prevalent General Linear Model (GLM) methods. Further, cICA automated the identification and removal of erroneous components and eliminated human errors during this process. Using a combined approach, i.e., by optimizing acquisition parameters, acquisition methods, and reconstruction methods during data collection to improve image quality and motion correction and, by better modeling, isolation and removal of residual motion artifacts using cICA, the impact of head motion on fMRI studies can be vastly reduced.en_US
dc.format.extent3026041 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectMotion in FMRI, Motion Correction, Susceptibility Artifacts, Constrained ICAen_US
dc.titleMitigation of Motion Artifacts in Functional MRI: A Combined Acquisition, Reconstruction and Post Processing Approach.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBiomedical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberNoll, Douglas C.en_US
dc.contributor.committeememberChenevert, Thomas L.en_US
dc.contributor.committeememberFessler, Jeffrey A.en_US
dc.contributor.committeememberHernandez, Luisen_US
dc.contributor.committeememberPeltier, Scott J.en_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/62439/1/kpandey_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.