Show simple item record

Quantitative inference of cellular parameters from microfluidic cell culture systems

dc.contributor.authorMehta, Khamir H.en_US
dc.contributor.authorMehta, Geetaen_US
dc.contributor.authorTakayama, Shuichien_US
dc.contributor.authorLinderman, Jennifer J.en_US
dc.date.accessioned2009-07-06T15:38:06Z
dc.date.available2010-10-05T18:27:29Zen_US
dc.date.issued2009-08-01en_US
dc.identifier.citationMehta, Khamir; Mehta, Geeta; Takayama, Shuichi; Linderman, Jennifer (2009). "Quantitative inference of cellular parameters from microfluidic cell culture systems." Biotechnology and Bioengineering 103(5): 966-974. <http://hdl.handle.net/2027.42/63052>en_US
dc.identifier.issn0006-3592en_US
dc.identifier.issn1097-0290en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/63052
dc.description.abstractMicrofluidic cell culture systems offer a convenient way to measure cell biophysical parameters in conditions close to the physiological environment. We demonstrate the application of a mathematical model describing the spatial distribution of nutrient and growth factor concentrations in inferring cellular oxygen uptake rates from experimental measurements. We use experimental measurements of oxygen concentrations in a poly(dimethylsiloxane) (PDMS) microreactor culturing human hepatocellular liver carcinoma cells (HepG2) to infer quantitative information on cellular oxygen uptake rates. We use a novel microchannel design to avoid the parameter correlation problem associated with simultaneous cellular uptake and diffusion of oxygen through the PDMS surface. We find that the cellular uptake of oxygen is dependent on the cell density and can be modeled using a logistic term in the Michaelis–Menten equation. Our results are significant not only for the development of novel assays to quantitatively infer cell response to stimuli, but also for the development, design, and optimization of novel in vitro systems for drug discovery and tissue engineering. Biotechnol. Bioeng. 2009;103: 966–974. © 2009 Wiley Periodicals, Inc.en_US
dc.format.extent381586 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherChemistryen_US
dc.subject.otherBiochemistry and Biotechnologyen_US
dc.titleQuantitative inference of cellular parameters from microfluidic cell culture systemsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbsecondlevelStatistics and Numeric Dataen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, 3328 G.G. Brown, 2300 Hayward, Ann Arbor, Michigan 48109; telephone: 734-763-0679; fax: 734-764-7453en_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, 3328 G.G. Brown, 2300 Hayward, Ann Arbor, Michigan 48109; telephone: 734-763-0679; fax: 734-764-7453 ; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan ; Department of Chemical Engineering, University of Michigan, 3328 G.G. Brown, 2300 Hayward, Ann Arbor, Michigan 48109; telephone: 734-763-0679; fax: 734-764-7453.en_US
dc.identifier.pmid19388086en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/63052/1/22334_ftp.pdf
dc.identifier.doi10.1002/bit.22334en_US
dc.identifier.sourceBiotechnology and Bioengineeringen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.