Show simple item record

The Relative Roles of Dynamics and Control in Bipedal Locomotion.

dc.contributor.authorO'Connor, Shawn Michaelen_US
dc.date.accessioned2009-09-03T14:52:38Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2009-09-03T14:52:38Z
dc.date.issued2009en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/63809
dc.description.abstractThe traditional view of motor control predicates that the central nervous system dictates the motions of the body through muscle activation. An alternative view suggests that movement may be governed by body dynamics alone without need for neural control. Both philosophies have merits, but neither represents a complete solution for robust and efficient behavior. We proposed an integrated view of control and dynamics and investigated how the natural dynamics of the limbs influence control strategies used to pattern and stabilize walking. We explored how features of human walking, traditionally absent in passive walking models, are gained by adding compliance. This compliant behavior essentially models work performed by muscle and tendon and predicts energetic costs measured in human walking. We also countered the notion that walking and running can best be described by stiff and compliant leg behavior, respectively. We showed that the amount and proportion of mechanical energy in the legs distinguishes between gaits much more so than leg compliance or other properties. However, some control is needed to provide spring-like actuation and could be afforded by reflex loops and neural oscillators located in the spinal cord. We used a compliant walking model to study how the feedforward and feedback nature of central pattern generators (CPGs) can be optimally combined to produce steady walking motions. Our findings suggest that CPGs serve a primary role to filter sensory information rather than to simply generate motor commands. Finally, three-dimensional passive walkers indicate that the fore-aft component of walking may be self stable, whereas lateral motion remains unstable and requires control, as through active foot placement. We tested whether healthy humans exhibit such direction-dependent control by applying low-frequency perturbations to the visual field and measuring foot placement during treadmill walking. We found step variability to be nearly ten times more sensitive to lateral perturbations than fore-aft, suggesting that the central nervous system gains fore-aft stability through uncontrolled behavior. Our results may have implications for the development of novel prosthetics, more energy efficient robots, and the rehabilitation of a broad set of neuromuscular and physical disorders that cause locomotor impairment.en_US
dc.format.extent2321927 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectEnergetics and Control of Locomotionen_US
dc.subjectWalking and Standing Balanceen_US
dc.subjectPassive Dynamic Walkingen_US
dc.titleThe Relative Roles of Dynamics and Control in Bipedal Locomotion.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBiomedical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberKuo, Arthur D.en_US
dc.contributor.committeememberFerris, Daniel P.en_US
dc.contributor.committeememberSienko, Kathleen Helenen_US
dc.contributor.committeememberUlrich, Beverly D.en_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/63809/1/smoconno_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.