Show simple item record

Source Attribution, Physicochemical Properties and Spatial Distribution of Wet Deposited Mercury to the Ohio River Valley

dc.contributor.authorWhite, Emily Maeen_US
dc.date.accessioned2009-09-03T14:52:54Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2009-09-03T14:52:54Z
dc.date.issued2009en_US
dc.date.submitted2009en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/63813
dc.description.abstractMercury (Hg) is a bioaccumulative neurotoxin that is emitted from anthropogenic sources through fossil fuel combustion. The spatial scale of atmospheric transport prior to deposition is dependent on the chemical and physical form of Hg emissions, and has yet to be quantitatively defined. A five-year comprehensive Hg monitoring and source apportionment study was conducted in Steubenville, Ohio to investigate atmospheric Hg deposition to the highly industrialized Ohio River Valley region. Long-term event-precipitation measurements revealed a significant 30% to three-fold enrichment of Hg concentrations and total Hg deposition flux to the Steubenville site over other Great Lakes regional sites. Multivariate receptor models attributed ~70% of Hg wet deposition to local coal combustion sources. While local stagnant atmospheric conditions led to moderately high volume-weighted mean Hg concentrations and the majority of Hg wet deposition flux, regional transport from the Chicago/Gary and Detroit/Windsor urban areas also led to elevated precipitation Hg concentrations, but did not contribute significantly to the overall Hg deposition. The degree of local source influence was established during a summertime field intensive study in which a local scale network of concurrently collected rain samples revealed that 42% of Hg wet deposition measured less than one km from the base of coal fired utilities could be attributed to the adjacent source, corresponding to 170% Hg concentration enhancement over regionally representative precipitation collected concurrently. In addition, 69±37% of the Hg collected in rain was in a soluble form, entering the precipitation as reactive gas phase or fine particle associated Hg. The Hg scavenging coefficient (rate of concentration reduction throughout a single precipitation event) was particularly low when compared to other trace elements. Furthermore, when compared to an upwind but non-locally source impacted site, the scavenging coefficient for Hg in the locally source influenced precipitation was significantly lower. These results indicate that a continuous source of soluble gaseous Hg may be the reason for the low scavenging coefficient. Therefore, this work revealed through measurements that the chemical forms of Hg in coal combustion emissions, and the physicochemical properties therein, explain the locally elevated Hg wet deposition observed.en_US
dc.format.extent5591702 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectAir Pollution Chemistryen_US
dc.subjectMercuryen_US
dc.subjectWet Depositionen_US
dc.subjectAtmospheric Transporten_US
dc.subjectCoal Combustion Emissionsen_US
dc.subjectHgen_US
dc.titleSource Attribution, Physicochemical Properties and Spatial Distribution of Wet Deposited Mercury to the Ohio River Valleyen_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineAtmospheric and Space Sciencesen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberKeeler, Gerald J.en_US
dc.contributor.committeememberLandis, Matthew S.en_US
dc.contributor.committeememberMarsik, Frank Josephen_US
dc.contributor.committeememberMichalak, Anna M.en_US
dc.contributor.committeememberSamson, Perry J.en_US
dc.subject.hlbsecondlevelAtmospheric, Oceanic and Space Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/63813/1/emwhite_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.