Show simple item record

Perturbations of Cellular Membranes with Synthetic Polymers and Ultrafast Lasers.

dc.contributor.authorKelly, Christopher Vaughn-Daigneauen_US
dc.date.accessioned2010-01-07T16:29:29Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2010-01-07T16:29:29Z
dc.date.issued2009en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/64719
dc.description.abstractThis dissertation examines the response of the plasma membrane to perturbations by synthetic nanoparticles and ultra-fast laser pulses. Both model membranes and living cells were examined in to characterize membrane disruption and the biological response to perturbation. These studies provide a deeper understanding of cell biology and guide the design of effective nanoparticle- or laser-based therapies, as well as warning about unintended exposure. In regards to membrane disruption by pulsed-laser irradiation, irradiation induced giant plasma membrane vesicles (GPMVs) on the surface of the living cell. This process involved the incorporation of material from the extracellular media into both the cytoplasm and the GPMV as the cell responded to the intense pressure and temperature gradients induced by irradiation and the subsequent cavitation. Further, the cell exposed phosphotidylserine to the exterior surface of the plasma membrane and GPMV and initiated caspase activity. Single particle tracking of 20 nm fluorescent beads within the GPMVs demonstrated a complex, gelatinous structure within the GPMV. In regards to nanoparticle-based perturbations, techniques such as isothermal titration calorimetry and molecular dynamics were used to investigate the relationship between nanoparticle properties and membrane disruption. Molecular dynamics simulations examined the binding of third-generation poly(amidoamine) dendrimers to phosphatidylcholine bilayers as a function on nanoparticle termination and membrane phase. A potential of mean force was calculated and demonstrated that the charged dendrimers bound to the zwitterionic phospholipids with approximately 50% more free energy release than uncharged dendrimers. Further, the difference in dendrimer binding to gel and fluid lipids was largely due to the hydrophobic interactions between the lipid tails and the non-polar dendrimer moieties. Isothermal titration calorimetry examined the heat release upon interaction between dendrimers and phospholipids. Identification of key changes in the heat release versus dendrimer-lipid molar ratio suggested the formation of a supramolecular complex dependent on the generation and termination of the dendrimer. This work suggested that dendrimers of seventh-generation or greater formed vesicle-encased dendrimer complexes while smaller dendrimers primarily formed complexes of the dendrimer flattened on a planar bilayer.en_US
dc.format.extent7140664 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectNanotoxicityen_US
dc.subjectDendrimeren_US
dc.subjectMembrane Disruptionen_US
dc.subjectBlebbingen_US
dc.subjectPore Formationen_US
dc.subjectLipid Bilayersen_US
dc.titlePerturbations of Cellular Membranes with Synthetic Polymers and Ultrafast Lasers.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineApplied Physicsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberBanaszak Holl, Mark M.en_US
dc.contributor.committeememberOrr, Bradford G.en_US
dc.contributor.committeememberBaker, Jr., James R.en_US
dc.contributor.committeememberChen, Zhanen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/64719/1/cvkelly_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.