Show simple item record

Hydrogen Production in a Radio-Frequency Plasma Source Operating on Water Vapor.

dc.contributor.authorNguyen, Son-Ca Viet Thien_US
dc.date.accessioned2010-01-07T16:29:34Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2010-01-07T16:29:34Z
dc.date.issued2009en_US
dc.date.submitted2009en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/64720
dc.description.abstractThe global energy and climate challenges have motivated development of innovative techniques to satisfy energy demand while minimizing emissions. To this end, hydrogen as an alternative energy carrier in the transportation sector is an attractive option. In addition, there is already a great need for hydrogen gas in several industrial processes such as hydro-cracking of crude oil to produce gasoline and production of ammonia and methanol. The current dominant methods of hydrogen production from fossil fuels are well-developed and have reached relatively high energy efficiencies (up to 85%), but these methods rely on non-renewable natural resources and produce carbon dioxide emissions. This work investigates the feasibility of hydrogen production by dissociating water molecules in a radio-frequency (RF) plasma discharge. In addition to the widespread usage of hydrogen gas, applications of water plasma have permeated in many areas of research, and information on basic behaviors of a water plasma discharge will provide fruitful insights for other researchers. An RF plasma source equipped with a double-helix antenna (m = 1 mode) and an applied axial magnetic field is designed to operate on water vapor. It is shown that water molecules are being dissociated in the discharge. Experimental results show that the rate of hydrogen production increases linearly with RF power in the absence of the applied axial magnetic field. With the magnetic field, the rate of hydrogen production increases from 250 to 500 W, and begins to saturate with RF power. Despite this saturation, it is shown that hydrogen increases with magnetic field strength at a fixed RF power. Further, the rate of hydrogen production increases with water input flow rate up to 100 sccm for a fixed RF power level, and begins to decrease at 125 sccm. This dissertation characterizes the rate of hydrogen production and plasma properties as a function of RF power, applied B-field strength, and water input flow rate. A zero-dimensional kinetics model is used to determine the theoretical energy efficiency.en_US
dc.format.extent25376679 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectWater Plasmaen_US
dc.subjectRadio-frequencyen_US
dc.titleHydrogen Production in a Radio-Frequency Plasma Source Operating on Water Vapor.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineAerospace Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberFoster, John Edisonen_US
dc.contributor.committeememberGallimore, Alec D.en_US
dc.contributor.committeememberBoyd, Iainen_US
dc.contributor.committeememberGilgenbach, Ronald M.en_US
dc.subject.hlbsecondlevelEngineering (General)en_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/64720/1/sonca_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.