Show simple item record

Plasma Membrane and Chromaffin Granule Characteristics in Digitonin-Treated Chromaffin Cells

dc.contributor.authorHolz, Ronald W.en_US
dc.contributor.authorSenter, Ruth A.en_US
dc.date.accessioned2010-04-01T14:42:02Z
dc.date.available2010-04-01T14:42:02Z
dc.date.issued1985-11en_US
dc.identifier.citationHolz, Ronald W.; Senter, Ruth A. (1985). "Plasma Membrane and Chromaffin Granule Characteristics in Digitonin-Treated Chromaffin Cells." Journal of Neurochemistry 45(5): 1548-1557. <http://hdl.handle.net/2027.42/65144>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65144
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=3876408&dopt=citationen_US
dc.description.abstractDigitonin permeabilizes the plasma membranes of bovine chromaffin cells to Ca 2+ , ATP, and proteins and allows micromolar Ca 2+ in the medium to stimulate directly catecholamine secretion. In the present study the effects of digitonin (20 Μ M ) on the plasma membrane and on intracellular chromaffin granules were further characterized. Cells with surface membrane labeled with [ 3 H]galactosyl moieties retained label during incubation with digitonin. The inability of digitonin-treated cells to shrink in hyperosmotic solutions of various compositions indicated that tetrasaccharides and smaller molecules freely entered the cells. ATP stimulated [ 3 H]norepinephrine uptake into digitonin-treated chromaffin cells fivefold. The stimulated [ 3 H]norepinephrine uptake was inhibited by 1 Μ M reserpine, 30 m M NH 4 + , or 1 Μ M carbonyl cyanide p -trifluoromethoxyphenylhydrazone (FCCP). The data indicate that [ 3 H]norepinephrine was taken up into the intracellular storage granules by the ATP-induced H + electrochemical gradient across the granule membrane. Reduction of the medium osmolality from 310 mOs to 100 mOs was required to release approximately 50% of the catecholamine from chromaffin granules within digitonin-treated chromaffin cells which indicates a similar osmotic stability to that in intact cells. Chromaffin granules in vitro lost catecholamine when the digitonin concentration was 3 Μ M or greater. Catecholamine released into the medium by micromolar Ca 2+ from digitonin-treated chromaffin cells that had subsequently been washed free of digitonin could not be pelleted in the centrifuge and was not accompanied by release of membrane-bound dopamine-Β-hydroxylase. The studies demonstrate that 20 Μ M of digitonin caused profound changes in the chromaffin cell plasma membrane permeability but had little effect on intracellular chromaffin granule stability and function. It is likely that the intracellular chromaffin granules were not directly exposed to significant concentrations of digitonin. Furthermore, the data indicate that during catecholamine release induced by micromolar Ca 2+ , the granule membrane was retained by the cells and that catecholamine release did not result from release of intact granules into the extracellular medium.en_US
dc.format.extent1179491 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1985 International Society for Neurochemistryen_US
dc.subject.otherChromaffin Cellsen_US
dc.subject.otherPlasma Membraneen_US
dc.subject.otherChromaffin Granulesen_US
dc.subject.otherDigitoninen_US
dc.subject.otherNorepinephrineen_US
dc.titlePlasma Membrane and Chromaffin Granule Characteristics in Digitonin-Treated Chromaffin Cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid3876408en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65144/1/j.1471-4159.1985.tb07226.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1985.tb07226.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBaker P. F. and Knight D. E. ( 1978 ) Calcium-dependent exocytosis in bovine adrenal medullar cells with leaky plasma membranes. Nature 276, 620 – 622.en_US
dc.identifier.citedreferenceBrooks J. C. and Treml S. ( 1983 ) Catecholamine secretion by chemically skinned cultured chromaffin cells. J. Neurochem. 40, 468 – 473.en_US
dc.identifier.citedreferenceCasey R. P., Njus D., Radda G. K., and Sehr P. A. ( 1976 ) Adenosine triphosphate-evoked catecholamine release in chromaffin granules, osmotic lysis as a consequence of proton translocation. Biochem. J. 158, 583 – 588.en_US
dc.identifier.citedreferenceDolais-Kitabgi J. and Perlman R. L. ( 1975 ) The stimulation of catecholamine release from chromaffin granules by valinomycin. Mol. Pharmacol. 11, 745 – 750.en_US
dc.identifier.citedreferenceDouglas W. W. and Rubin R. P. ( 1963 ) The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling. J. Physiol. (Lond.) 167, 288 – 310.en_US
dc.identifier.citedreferenceDunn L. A. and Holz R. W. ( 1983 ) Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells. J. Biol. Chem. 258, 4989 – 4993.en_US
dc.identifier.citedreferenceFenwick E. M., Fajdiga P. B., Howe N. B. S., and Livett B. G. ( 1978 ) Functional and morphological characterization of isolated bovine adrenal medullary cells. J. Cell Biol. 76, 12 – 30.en_US
dc.identifier.citedreferenceHampton R. Y. and Holz R. W. ( 1983 ) The effects of osmolality on the stability and function of cultured chromaffin cells and the role of osmotic forces in exocytosis. J. Cell Biol. 96, 1082 – 1088.en_US
dc.identifier.citedreferenceHoffman P. G., Zinder O., Bonner W. M., and Pollard H. B. ( 1976 ) Role of ATP and Β-iminoadenosinetriphosphate in the stimulation of epinephrine and protein release from isolated adrenal secretory vesicles. Arch. Biochem. Biophys. 176, 375 – 387.en_US
dc.identifier.citedreferenceHolz R. W ( 1978 ) Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential. Proc. Natl. Acad. Sci. USA 75, 5190 – 5194.en_US
dc.identifier.citedreferenceHolz R. W ( 1979 ) Measurement of membrane potential of chromaffin granules by accumulation of triphenylmethylphosphonium cation. J. Biol. Chem. 254, 6703 – 6709.en_US
dc.identifier.citedreferenceHolz R. W. ( 1980 ) Osmotic lysis of bovine chromaffin granules in isotonic solutions of weak organic acids. J. Biol. Chem. 255, 7751 – 7755.en_US
dc.identifier.citedreferenceHolz R. W., Senter R. A., and Frye R. A. ( 1982 ) Relationship between Ca 2+ uptake and catecholamine secretion in primary dissociated cultures of adrenal medulla J. Neurochem. 39, 635 – 646.en_US
dc.identifier.citedreferenceHolz R. W., Senter R. A. and Sharp R. R. ( 1983 ) Evidence that the H + electrochemical gradient across membranes of chromaffin granules is not involved in exocytosis. J. Biol. Chem. 258, 7506 – 7513.en_US
dc.identifier.citedreferenceHÖrtnagl H., Winkler H., and Lochs H. ( 1972 ) Membrane proteins of chromaffin granules: dopamine Β-hydroxylase, a major constituent. Biochem. J. 129, 187 – 195.en_US
dc.identifier.citedreferenceJohnson R. C. and Scarpa A. ( 1979 ) Protonmotive force and catecholamine transport in isolated chromaffin granules. J. Biol. Chem. 254, 3750 – 3760.en_US
dc.identifier.citedreferenceKenigsberg R. L. and Trifaro J. M. ( 1980 ) Presence of a high affinity uptake system for catecholamines in cultured bovine adrenal chromaffin cells. Neuroscience 5, 1547 – 1556.en_US
dc.identifier.citedreferenceKilpatrick D. L., Ledbetter F. H., Carson K. A., Slepetis R., and Kirshner N. ( 1980 ) Stability of bovine adrenal medulla cells in culture. J. Neurochem. 35, 679 – 692.en_US
dc.identifier.citedreferenceKilpatrick D. L., Slepetis R., and Kirshner N. ( 1981 ) Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells. J. Neurochem. 36, 1245 – 1255.en_US
dc.identifier.citedreferenceKirshner, N. ( 1962 ) Uptake of catecholamine by a particulate fraction of the adrenal medulla. J. Biol. Chem. 237, 2311 – 2317.en_US
dc.identifier.citedreferenceKnight D. E. and Baker P. F. ( 1982 ) Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J. Membr. Biol. 68, 107 – 140.en_US
dc.identifier.citedreferenceLishjako F ( 1970 ) Osmotic factors determining the release of catecholamines from isolated chromaffin granules. Acta Physiol. Scand. 79, 64 – 75.en_US
dc.identifier.citedreferenceNagatsu T. and Udenfriend S. ( 1972 ) Photometric assay of dopamine-Β-hydroxylase activity in human blood. Clin. Chem. 18, 980 – 983.en_US
dc.identifier.citedreferenceNanninga L. B. and Kempen R. ( 1971 ) Role of magnesium and calcium in the first and second contraction of glycerin-extracted muscle fibers. Biochemistry 10, 2449 – 2456.en_US
dc.identifier.citedreferenceNeter J. and Wasserman W. ( 1974 ) Applied Linear Statistical Models Regression, Analysis of Variance and Experimental Design, p. 480. Richard D. Irwin Inc., Homewood, IL.en_US
dc.identifier.citedreferenceNjus D. and Radda G. K. ( 1979 ) A potassium ion diffusion potential causes adrenaline uptake in chromaffin-granule ‘ghosts’. Biochim. J. 180, 579 – 585.en_US
dc.identifier.citedreferenceNjus D., Knoth J., and Zallakian M. ( 1981 ) Proton-linked transport in chromaffin granules. Curr. Top. Bioenerg. 11, 107 – 147.en_US
dc.identifier.citedreferencePollard H. B., Pazoles C. J., Creutz C. E., and Zinder O. ( 1979 ) The chromaffin granule and possible mechanisms of exocytosis. Int. Rev. Cytol. 58, 159 – 197.en_US
dc.identifier.citedreferencePortzehl H., Caldwell P. C., and Ruegg J. C. ( 1964 ) The dependence of contraction and relaxation of muscle fibers from the crab Maia Squinado on the internal concentration of free calcium ions. Biochim. Biophys. Acta 79, 581 – 591.en_US
dc.identifier.citedreferenceTorres C. R. and Hart G. W. ( 1984 ) Topography and polypeptide distribution of terminal N -acetylglucosamine residues on the surfaces of intact lymphocytes. J. Biol. Chem. 259, 3308 – 3317.en_US
dc.identifier.citedreferenceViveros O. H. ( 1975 ) Mechanism of secretion of catecholamines from adrenal medulla, in Handbook of Physiology Endocrinology ( Blaschko H., Sayers G., and Smith A. D., ed ), Section 7, Vol. 6, pp. 389 – 426. American Physiological Society, Washington, D.C.en_US
dc.identifier.citedreferenceWilson S. P. and Kirshner N. ( 1976 ) Isolation and characterization of plasma membranes from the adrenal medulla. J. Neurochem. 27, 1280 – 1298.en_US
dc.identifier.citedreferenceWilson S. P. and Kirshner N. ( 1983 ) Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells. J. Biol. Chem. 258, 4994 – 5000.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.