Show simple item record

Identification of a nerve ending-enriched 29-kDa protein, labeled with [3- 32 P]1,3-bisphosphoglycerate, as monophosphoglycerate mutase: inhibition by fructose-2,6-bisphosphate via enhancement of dephosphorylation

dc.contributor.authorIkemoto, Atsushien_US
dc.contributor.authorUeda, Tetsufumien_US
dc.date.accessioned2010-04-01T14:42:50Z
dc.date.available2010-04-01T14:42:50Z
dc.date.issued2003-06en_US
dc.identifier.citationIkemoto, Atsushi; Ueda, Tetsufumi (2003). "Identification of a nerve ending-enriched 29-kDa protein, labeled with [3- 32 P]1,3-bisphosphoglycerate, as monophosphoglycerate mutase: inhibition by fructose-2,6-bisphosphate via enhancement of dephosphorylation." Journal of Neurochemistry 85(6): 1382-1393. <http://hdl.handle.net/2027.42/65158>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65158
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12787058&dopt=citationen_US
dc.description.abstractGlucose metabolism is of vital importance in normal brain function. Evidence indicates that glycolysis, in addition to production of ATP, plays an important role in maintaining normal synaptic function. In an effort to understand the potential involvement of a glycolytic intermediate(s) in synaptic function, we have prepared [3- 32 P]1,3-bisphosphoglycerate and [ 32 P]3-phosphoglycerate and sought their interaction with a specific nerve-ending protein. We have found that a 29-kDa protein is the major component labeled with either [3- 32 P]1,3-bisphosphoglycerate or [ 32 P]3-phosphoglycerate. The protein was identified as monophosphoglycerate mutase (PGAM). This labeling was remarkably high in the brain and synaptosomal cytosol fraction, consistent with the importance of glycolysis in synaptic function. Of interest, fructose-2,6-bisphosphate (Fru-2,6-P 2 ) inhibited PGAM phosphorylation and enzyme activity. Moreover, Fru-2,6-P 2 potently stimulated release of [ 32 P]phosphate from the 32 P-labeled PGAM (EC 50  = 1 µm), suggesting that apparent reduction of PGAM phosphorylation and enzyme activity by Fru-2,6-P 2 may be due to stimulation of dephosphorylation of PGAM. The significance of these findings is discussed.en_US
dc.format.extent318510 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2003 International Society for Neurochemistryen_US
dc.subject.other1,3-bisphosphoglycerateen_US
dc.subject.otherFructose-2,6-bisphosphateen_US
dc.subject.otherGlycolysisen_US
dc.subject.otherNerve Endingen_US
dc.subject.otherPhosphoglycerate Mutaseen_US
dc.titleIdentification of a nerve ending-enriched 29-kDa protein, labeled with [3- 32 P]1,3-bisphosphoglycerate, as monophosphoglycerate mutase: inhibition by fructose-2,6-bisphosphate via enhancement of dephosphorylationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Psychiatry, The University of Michigan Medical School, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother* Mental Health Research Institute, Departments ofen_US
dc.contributor.affiliationother† Pharmacology anden_US
dc.identifier.pmid12787058en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65158/1/j.1471-4159.2003.01777.x.pdf
dc.identifier.doi10.1046/j.1471-4159.2003.01777.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAmbrosio S., Ventura F., Rosa J. L. and Bartrons R. ( 1991 ) Fructose 2,6-bisphosphate in hypoglycemic rat brain. J. Neurochem. 57, 200 – 203.en_US
dc.identifier.citedreferenceAmbrosio S., Ventura F. and Bartrons R. ( 1992 ) Fructose 2,6-bisphosphate in developing rat brain. Dev. Brain Res. 66, 274 – 276.en_US
dc.identifier.citedreferenceAndres V., Cusso R. and Carreras J. ( 1989 ) Distribution and developmental transition of phosphoglycerate mutase and creatine phosphokinase isozymes in rat muscles of different fiber-type composition. Differentiation 41, 72 – 77.en_US
dc.identifier.citedreferenceAnglard P., Magal E. and Louis J. -C. ( 1992 ) Stimulation of glycolysis by corticotropin and phorbol ester in cultured neurons. Biochim. Biophys. Acta 1133, 321 – 328.en_US
dc.identifier.citedreferenceBaldwin K. M., Winder W. W., Terjung R. L. and Holloszy J. O. ( 1973 ) Glycolytic enzymes in different types of skeletal muscle: adaptation to exercise. Am. J. Physiol. 225, 962 – 966.en_US
dc.identifier.citedreferenceBeutler E., Blume K. G., Kaplan J. C., Lohr G. W., Ramot B. and Valentine W. N. ( 1977 ) International Committee for Standardization in Haematology: Recommended methods for red-cell enzyme analysis. Br. J. Haematol. 35, 331 – 340.en_US
dc.identifier.citedreferenceBradford M. M. ( 1976 ) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248 – 254.en_US
dc.identifier.citedreferenceCox D. W. G. and Bachelard H. S. ( 1982 ) Attenuation of evoked field potentials from dentate granule cells by low glucose, pyruvate, malate, and sodium fluoride. Brain Res. 239, 527 – 534.en_US
dc.identifier.citedreferenceDirks B., Hanke H., Krieglstein J., Stock R. and Wickop G. ( 1980 ) Studies on the linkage of energy metabolism and activity in the isolated perfused rat brain. J. Neurochem. 35, 311 – 317.en_US
dc.identifier.citedreferenceFoe L. G. and Kemp R. G. ( 1984 ) Isozyme composition and phosphorylation of brain phosphofructokinase. Arch. Biochem. Biophys. 228, 503 – 511.en_US
dc.identifier.citedreferenceFoe L. G. and Kemp R. G. ( 1985 ) Isolation and characterization of phosphofructokinase C from rabbit brain. J. Biol. Chem. 260, 726 – 730.en_US
dc.identifier.citedreferenceFothergill-Gilmore L. A. and Watson H. C. ( 1989 ) The phosphoglycerate mutases. Adv. Enzymol. 62, 227 – 313.en_US
dc.identifier.citedreferenceGhajar J. B. G., Plum F. and Duffy T. E. ( 1982 ) Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetized rats. J. Neurochem. 38, 397 – 409.en_US
dc.identifier.citedreferenceHolloszy J. O. and Booth F. W. ( 1976 ) Biochemical adaptations to endurance exercise in muscle. Ann. Rev. Physiol. 38, 273 – 291.en_US
dc.identifier.citedreferenceIkemoto A., Bole D. G. and Ueda T. ( 2003 ) Glycolysis and glutamate accumulation into synaptic vesicles: Role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase. J. Biol. Chem. 278, 5929 – 5940.en_US
dc.identifier.citedreferenceKasten T. P., Mhaskar Y. and Dunaway G. A. ( 1993 ) Regulation of brain 6-phosphofructo-1-kinase: Effects of aging, fructose 2,6-bisphosphate, and regional subunit distribution. Mol. Cell. Biochem. 120, 61 – 68.en_US
dc.identifier.citedreferenceKnull H. R. ( 1978 ) Association of glycolytic enzymes with particulate fractions from nerve endings. Biochim. Biophys. Acta 522, 1 – 9.en_US
dc.identifier.citedreferenceKnull H. R. ( 1980 ) Compartmentation of glycolytic enzymes in nerve endings as determined by glutaraldehyde fixation. J. Biol. Chem. 255, 6439 – 6444.en_US
dc.identifier.citedreferenceLaemmli U. K. ( 1970 ) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680 – 685.en_US
dc.identifier.citedreferenceMorino H., Fischer-Bovenkerk C., Kish P. E. and Ueda T. ( 1991 ) Phosphoglycerates and protein phosphorylation: Identification of a protein substrate as glucose-1,6-bisphosphate synthetase. J. Neurochem. 56, 1049 – 1057.en_US
dc.identifier.citedreferenceOkar D. A. and Lange A. J. ( 1999 ) Fructose-2,6-bisphosphate and control of carbohydrate metabolism in eukaryotes. Biofactors 10, 1 – 14.en_US
dc.identifier.citedreferenceOkar D. A., Manzano A., Navarro-Sabate A., Riera L., Bartrons R. and Lange A. J. ( 2001 ) PFK-2/FBPase-2: Maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem. Sci. 26, 30 – 35.en_US
dc.identifier.citedreferenceRose Z. B. ( 1970 ) Evidence for a phosphohistidine protein intermediate in the phosphoglycerate mutase reaction. Arch. Biochem. Biophys. 140, 508 – 513.en_US
dc.identifier.citedreferenceRose Z. B. ( 1980 ) The enzymology of 2,3-bisphosphoglycerate. Adv. Enzymol. 51, 211 – 253.en_US
dc.identifier.citedreferenceRose Z. B. and Dube S. ( 1976 ) Rates of phosphorylation and dephosphorylation of PGAM and bisphosphoglycerate synthase. J. Biol. Chem. 251, 4817 – 4822.en_US
dc.identifier.citedreferenceSiesjo B. K. ( 1978 ) Brain Energy Metabolism, pp. 101 – 130. John Wiley & Sons, New York.en_US
dc.identifier.citedreferenceUeda T. and Plagens D. G. ( 1987 ) 3-Phosphoglycerate-dependent protein phosphorylation. Proc. Natl Acad. Sci. USA 84, 1229 – 1233.en_US
dc.identifier.citedreferenceUeda T., Greengard P., Berzins K., Cohen R. S., Blomberg F., Grab D. J. and Siekevitz P. ( 1979 ) Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cAMP-dependent protein kinase. J. Cell Biol. 83, 308 – 319.en_US
dc.identifier.citedreferenceVan Schaftingen E. ( 1987 ) Fructose-2,6-bisphosphate. Adv. Enzymol. 59, 316 – 395.en_US
dc.identifier.citedreferenceVan Schaftingen E., Jett M. E., Hue L. and Hers H. G. ( 1981 ) Control of liver 6-phosphofructokinase by fructose-2,6-bisphosphate and other effectors. Proc. Natl Acad. Sci. USA 78, 3483 – 3486.en_US
dc.identifier.citedreferenceVentura F., Rosa J. L., Ambrosio S., Gil J. and Bartrons R. ( 1991 ) 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase in rat brain. Biochem. J. 276, 455 – 460.en_US
dc.identifier.citedreferenceVentura F., Rosa J. L., Ambrosio S., Pilkis S. J. and Bartrons R. ( 1992 ) Bovine brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: Evidence for a neural-specific isozyme. J. Biol. Chem. 267, 17939 – 17943.en_US
dc.identifier.citedreferenceYamamoto M., Hamasaki N., Maruta Y. and Tomonaga M. ( 1990 ) Fructose 2,6-bisphosphate changes in rat brain during ischemia. J. Neurochem. 54, 592 – 597.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.