Show simple item record

Attachment of the Synapse-Specific Phosphoprotein Protein I to the Synaptic Membrane: A Possible Role of the Collagenase-Sensitive Region of Protein I

dc.contributor.authorUeda, Tetsufumien_US
dc.date.accessioned2010-04-01T14:44:18Z
dc.date.available2010-04-01T14:44:18Z
dc.date.issued1981-01en_US
dc.identifier.citationUeda, Tetsufumi (1981). "Attachment of the Synapse-Specific Phosphoprotein Protein I to the Synaptic Membrane: A Possible Role of the Collagenase-Sensitive Region of Protein I." Journal of Neurochemistry 36(1): 297-300. <http://hdl.handle.net/2027.42/65184>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65184
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=6257847&dopt=citationen_US
dc.description.abstractThe purified synapse-specific phosphoprotein Protein I was previously shown to be degraded by a bacterial collagenase, through a series of intermediates, to a collagenase-resistant fragment of molecular weight about 48,000 containing a phosphorylated serine residue. In this study, a purified synaptic membrane fraction containing Protein I was treated with Cl. his-tolyticum collagenase; membrane-bound and membrane-free proteins were then phosphorylated using [Γ- 32 P]ATP and analyzed by SDS-polyacrylamide gel electrophoresis and autoradiography. It was observed that Protein I bound to the synaptic membrane was susceptible to the collagenase and degraded to fragments of molecular weights about 68,000, 62,000, and 48,000; the 68,000 fragment remained bound to the membrane whereas the 62,000 and 48,000 fragments were dissociated from the membrane. These observations suggest that the peptide moiety of mol. wt. 6000, present in the 68,000 fragment but absent from the 62,000 fragment, may play a crucial role in anchoring Protein I to the synaptic membrane.en_US
dc.format.extent380313 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1981 International Society for Neurochemistryen_US
dc.subject.otherCyclic AMPen_US
dc.subject.otherRegulated Phosphoproteinen_US
dc.subject.otherProtein Ien_US
dc.subject.otherSynaptic Membraneen_US
dc.subject.otherCollagenase Sensitivityen_US
dc.titleAttachment of the Synapse-Specific Phosphoprotein Protein I to the Synaptic Membrane: A Possible Role of the Collagenase-Sensitive Region of Protein Ien_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMental Health Research Institute and the Departments of Psychiatry and Pharmacology, The University of Michigan, Ann Arbor, Michigan 48109, U.S.A.en_US
dc.identifier.pmid6257847en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65184/1/j.1471-4159.1981.tb02408.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1981.tb02408.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBloom F. E. ( 1975 ) Role of cyclic nucleotides in central synaptic functions. Rev. Physiol. Biochem. Pharmacol. 74, 1 – 103.en_US
dc.identifier.citedreferenceBloom F. E., Ueda T., Battenberg E., and Greengard P. ( 1979 ) Immunocytochemical localization, in synapses, of protein I, an endogenous substrate for protein kinases in mammalian brain. Proc. Natl. Acad. Sci. USA 76, 5982 – 5986.en_US
dc.identifier.citedreferenceDaly J. W. ( 1977 ) The formation, degradation, and function of cyclic nucleotides in the nervous system. Int. Rev. Neurobiol. 20, 105 – 168.en_US
dc.identifier.citedreferenceDeBlas A. L., Wang Y-J., Sorensen R., and Mahler H. R. ( 1979 ) Protein phosphorylation in synaptic membranes regulated by adenosine 3′:5′-monophosphate: Regional and subcellular distribution of the endogenous substrates. J. Neurochem. 33, 647 – 659.en_US
dc.identifier.citedreferenceDudai Y. and Silman I. ( 1974 ) The effects of solubilization procedures on the release and molecular state of acetylcholin-esterase from electric organ tissue. J. Neurochem. 23, 1177 – 1187.en_US
dc.identifier.citedreferenceGreengard P. ( 1978 ) Cyclic Nucleotides, Phosphorylated Proteins and Neuronal Functions. Raven Press, New York.en_US
dc.identifier.citedreferenceHall Z. W. and Kelly R. B. ( 1971 ) Enzymatic detachment of endplate acetylcholinesterase from muscle. Nature 232, 62 – 63.en_US
dc.identifier.citedreferenceHarper E. and Kang A. M. ( 1970 ) Studies on the specificity of bacterial collagenase. Biochem. Biophys. Res. Commun. 41, 482 – 487.en_US
dc.identifier.citedreferenceKelly D. T., Cotman C. W., and Largen M. ( 1979 ) Cyclic AMP-stimulated protein kinases at brain synaptic junctions. J. Biol. Chem. 254, 1564 – 1575.en_US
dc.identifier.citedreferenceLohmann S. A., Ueda T., and Greengard P. ( 1978 ) Ontogeny of synaptic phosphoproteins in brain. Proc. Natl. Acad. Sci. USA 75, 4037 – 4041.en_US
dc.identifier.citedreferenceLowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. ( 1951 ) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265 – 275.en_US
dc.identifier.citedreferenceLwebuga-Mukasa J. S., Lappi S., and Taylor P. ( 1976 ) Molecular forms of acetylcholinesterase from Torpedo californica : Their relationship to synaptic membranes. Biochemistry 15, 1425 – 1434.en_US
dc.identifier.citedreferenceRieger F., Bon S., Massoulie J., and Cartaud J. ( 1973 ) Observation par microscopie Électronique des formes allongÉes et globulaires de l'acetylcholinesterase de gymnote (Electrophorus Électricus). Eur. J. Biochem. 34, 539 – 547.en_US
dc.identifier.citedreferenceRosenberry T. and Richardson J. M. ( 1977 ) Structure of 18S and 14S acetylcholinesterase. Identification of collagen-like subunits that are linked by disulfide bonds to catalytic subunits. Biochemistry 16, 3550 – 3558.en_US
dc.identifier.citedreferenceUeda T. and Greengard P. ( 1977 ) Adenosine 3′:5′-monophosphate-regulated phosphoprotein system of neuronal membranes. I. Solubilization, purification and some properties of an endogenous phosphoprotein. J. Biol. Chem. 252, 5155 – 5163.en_US
dc.identifier.citedreferenceUeda T., Greengard P., Berzins K., Cohen R. S., Blomberg F., Grab D. J., and Siekevitz P. ( 1979 ) Subcellular distribution in cerebral cortex of two proteins phosphorylated by a CAMP-dependent protein kinase. J. Cell Biol. 83, 308 – 319.en_US
dc.identifier.citedreferenceUno T., Ueda T., and Greengard P. ( 1977 ) Adenosine 3′:5′-monophosphate-regulated phosphoprotein system of neuronal membranes. II. Solubilization, purification and some properties of an endogenous adenosine 3′:5′-monophosphate-dependent protein kinase. J. Biol. Chem. 252, 5164 – 5174.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.