Show simple item record

Effects of Antiepileptic Drugs on GABA Responses and on Reduction of GABA Responses by PTZ and DMCM on Mouse Neurons in Cell Culture

dc.contributor.authorDeyn, Pétér P. Deen_US
dc.contributor.authorMacdonald, Robert L.en_US
dc.date.accessioned2010-04-01T14:44:33Z
dc.date.available2010-04-01T14:44:33Z
dc.date.issued1989-02en_US
dc.identifier.citationDeyn, PÉtÉr P. De; Macdonald, Robert L. (1989). "Effects of Antiepileptic Drugs on GABA Responses and on Reduction of GABA Responses by PTZ and DMCM on Mouse Neurons in Cell Culture." Epilepsia 30(1): 17-25. <http://hdl.handle.net/2027.42/65188>en_US
dc.identifier.issn0013-9580en_US
dc.identifier.issn1528-1167en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65188
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=2912714&dopt=citationen_US
dc.description.abstractThe mechanisms of action of antiepileptic drugs effective against generalized absence seizures (antiabsence AEDs) remain uncertain. Antiabsence AEDs are generally effective against seizures induced in experimental animals by pentylenÉtÉtrazol (PTZ) and methyl-6,7-dimethoxy-4-ethyl-Β-carboline-3-carboxylate (DMCM), drugs which reduce GABAergic inhibition. Thus, antiabsence AEDs have been suggested to enhance GABAergic inhibition. We studied the effects of several AEDs on GABA responses recorded from mouse spinal cord neurons grown in primary dissociated cell culture. Four antiabsence AEDs were included: ethosuximide (ESM), dimethadione (DMO), sodium valproate (VPA), and diazepam (DZP). Two experimental AEDs, CGS 9896 and ZK 91296, with anticonvulsant action against PTZ- or DMCM-induced seizures were also included. Possible effects of the antiabsence and experimental AEDS on PTZ- and DMCM-induced inhibition of GABA responses were also evaluated. PTZ and DMCM revers-ibly reduced GABA responses in a concentration-dependent manner. PTZ complÉtÉly inhibited GABA responses at 10 mM (IC 50 of 1.1 mM), whereas DMCM-induced inhibition of GABA responses reached a plateau level of 39% of control values at 1 p.M (IC 50 of 33 nM). ESM (1,200 ΜM), DMO (6 mM), VPA (200 u.M), CGS 9896 (2 ΜM), and ZK 98% (2 Μ M ) did not alter GABA responses. DZP enhanced GABA responses in a concentration-dependent manner. The inhibition of GABA responses produced by PTZ 1 mM was unaltered by ESM (600 Μ M ), DMO (6 mM), CGS 9896 (1 Μ M), or ZK 9896 (1 ΜM)- Coapplication of VPA (200 ΜM) and PTZ (1 mM) slightly enhanced the PTZ effect. DZP (> 10 nM), however, reversed the PTZ-induced reduction of GABA responses. The DMCM (250 nM) inhibition of GABA-responses was unaltered by ESM (600 Μ.M), DMO (2 mM), or VPA (200 ΜM). CGS 9896 (2 Μ M ) and ZK 91296 (2 ΜM), however, antagonized the DMCM effect. DZP (> 10 nM) significantly reversed the DMCM-induced inhibition of GABA responses. The lack of effect of VPA, ESM, and DMO on postsynaptic GABA responses suggests that direct enhancement of postsynaptic GABA action is not a common mechanism of action of antiabsence AEDs. The AEDs DZP, CGS 98%, and ZK 912% all reversed DMCM, but not PTZ, reduction of GABA responses, suggesting that these AEDs blocked DMCM seizures by acting at benzodiazepine receptors. However, since only DZP enhanced GABA responses, it is unclear how CGS 98% and ZK 912% blocked PTZ seizures. Key Words: Anticonvulsants–GABA–Neuron culture–Cell culture–Spinal cord neurons–Convulsants. RESUMEN Los mecanismos de accidn de las medicaciones antiepilÉpticas eficaces contra los ataques generalizados de ausencia (AEDs antiausencia) permanecen inciertos. Los AEDs antiausencia son, generalmente, eficaces contra ataques experimentales inducidos por el pentilentetrazol (PTZ) y el metil-6,7-dimetoxy-4-etil-Pcarbolina-3-carboxilato (DMCM) en animates, medicaciones que reducen la inhibiciÓn GABAÉrgica. Hemos estudiado los efectos de varios AEDs sobre respuestas-GABA registradas en las neuronas de la mÉdula espinal de ratones que habian crecido en cultivos de cÉlulas primarieas disociadas. Cuatro AEDs antiausencia fueron incluidos: etoxusimida (ESM), dimetadiona (DMO), valproato sÓdico (VPA) y diazepan (DZP). TambtÉn se incluyeron dos AEDs experimentales, CGS 9896 y ZK 912%, con acciÓn anticonvulsiva contra los ataques inducidos por PTZ o DMCM. TambiÓn se valoraron los posibles efectos de los AEDs antiausencia y experimentales sobre el PTZ y la inhibiciÓn de las respuestas-GABA inducidas por el DMCM. El PTZ y el DMCM redujeron las respuestas-GABA de modo reversible y dependiendo de sus concentraciones. El PTZ inhibiÓ cmpleta-mente las respuestas-GABA a 10 mM (IC 50 de 1.1 mM) mientras que la inhibitiÓn de las respuestas GABA inducida por el DMCM alcanzÓ un nivel estable del 39% de los valores control con 1 Μ. M (IC 50 de 33 mM). La ESM (1200 Μ.M), la DMO (6 mM), el VPA (200 Μ M ), el CGS 98% (2 Μ M) y el ZK 98% (2 Μ M) no alteraron las respuestas-GABA. El DZP aumentÓ las respuestas GABA de una manera concentraciÓn-dependiente. La inhibition de las respuestas-GABA producidas por el PTZ (1 mM), no se altero con las ESM (600 Μ M), la DMO (6 mM), el CGS 98% (1 Μ M) o el ZK 98% (1 Μ .M). La co-aplicacion de VPA (200 Μ M) y el PTZ (1 mM) aument6 ligeramente los efectos del PTZ. Sin embargo el DZP (<10 nM) revirtiÓ la reduction de las respuestas GABA inducidas por el PTZ. La reduction de las respuestas GABA producida por el DMCM (250 nM) no fue alterada por la ESM (600 u.M), la DMO (2 mM) o el VPA (200 Μ M ). Sin embargo el CGS 9896 (2 Μ M), y el ZK 91296 (2 Μ M ), antagonizaron el efecto del DMCM. El DZP (>10 nM) revirtiÓ significativamente la inhibition de las respuestas GABA inducidas por el DMCM. La falta de efectos de CPA, ESM y DMO sobre las respuestas GABA post-sinÁpticas sugiere que el incremento de la acciÓn GABA post-sinÁptica no es un mecanismo comÚn de actuatiÓn de las AEDs antiausencia. Todas las AEDs DZP, CGS 98% y ZK 912% revirtieron la reduction de las respuestas GABA producidas por el DMCM pero no las inducidas por el PTZ lo que sugiere que estos AEDs bloquean los ataques DMCM actuando sobre los receptores de la benzodiazepina. Sin embargo, puesto que el incremento de las respuestas GABA sÓlÓ se produce por el DZP, permanece todavia sin aclarar el por quÉ el CGS 98% y el ZK 912% bloquean los ataques producidos por el PTZ. ZUSAMMENFASSUNG Der Wirkmechansimus von Antiepileptika gegen generalisierte Absencen ist unklar. Antiabsencemittel sind generell wirkungs-voll gegen PTZ- und Methyl-6,7-Dimethoxy-4-Äthyl-P-Carbolin-Β-Carboxylat (DMCM) induzierte tierexperimentelle AnfÄlle, also von Medikamenten, die die GABA-erge Inhibition reduzieren. Es wurde vermutet, daß Antiabsencemittel die GABA-erge Inhibition verstÄrken. Wir untersuchten die Wirkung von verschiedenen Antiepileptika auf GABA-Antworten in spinalen MÄuseneuronen, die in Zellkulturen gew-achsen waren. Es wurden 4 Absencemittel untersucht: Ethosux-imid (ESM), Dimethadion (DMD), Sodium Valproat (VPA) und Diazepam (DZP). ZusÄtzlich wurden 2 experimentelle Antiepileptika, CGS 98% und ZK 912%, die gegen PTZ0 oder DMCM-induzierte AnfÄlle wirkungsvoll sind, eingeschlossen. Mogliche Wirkungen der Antiabsence- und experimentellen Antiepileptika auf PTZ- und DMCM-induzierte Hemmung der GABA-Antworten wurden ebenfalls ausgewertet. PTZ und DMCM zeigten eine konzentrationsabhÄngige reversible Reduktion der GABA-Antworten. PTZ zeigte eine komplette Hemmung der GABA-Antworten bei 10 mM (IC 50 1,1 mM), DMCM-Hemmung der GABA-Antworten zeigte ein Plateau von 39% der Kontroll-werte bei 1 uJtf (ICJO von 33 mAfl. ESM (1200 uJtf), DMD (6 mM), VPA (200 Μ M), CGS 98% (2 Μ M) und ZK 98% (2 Μ M) anderten nicht die GABA-Antworten. DZP verstarkte die GABA-Antworten konzentrationsabhangig. Die durch PTZ (1 mM) hervorgerufene Hemmung der GABA-Antworten war bei ESM (600 Μ M), DMD (6 mM), CGS 98% (1 mAO und ZK 3836 (1 mM) unverÄndert. ZusÄtliche Anwendung von VPA (200 mM) und PTZ (1 mM) verstÄrkten geringfÜgig den PTZ-Effekt. DZP (10 nM) kehrte die durch PTZ hervorgerufene Reduktion der GABA-Antworten um. Die durch DMCM (250 nM) hervorgerufene Hemmung der GABA-Antworten war durch ESM (600 Μ .M), DMD (2 mM) und VPA (200 Μ M ) unbeeinflusst. CGS 98% (2 Μ M) und ZK 912% (2 Μ M ) antagonisierten die DMCM-Wirkung. DZP (>10 nM) kehrte die durch DMCM-induzierte Hemmung der GABA-Antworten um. Das Fehlen einer Wirkung von VPA. ESM und DMD auf die postsynaptischen GABA-Antworten legen nahe, daß eine direkte VerstÄrkung der postsynaptischen GABA-Aktion kein gemeinsamer Mechanis-mus der Antiabsencemittel darstellt. Die Antiepileptika DZP, CGS 98% und ZK 912% kehrten die DMCM-Wirkung auf die GABA-Antworten um, jedoch nicht die von PTZ, was vermuten lapt, daß diese Antiepileptika die DMCM-AnfÄlle Über die Wirkung an den Benzodiazipin-Rezeptoren verhinderte. Da jedoch nur DZP GABA-Antworten verstarkte, ist unklar, in welcher Weise CGS 98% und ZK 912% die PTZ-AnfaUe ver-hinderten.en_US
dc.format.extent874443 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1989 International League Against Epilepsyen_US
dc.titleEffects of Antiepileptic Drugs on GABA Responses and on Reduction of GABA Responses by PTZ and DMCM on Mouse Neurons in Cell Cultureen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum*Department of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationother†Research Institute, Born Bunge Foundation, University of Antwerp, Laboratory of Neurochemistry and Neuropharmacology, Antwerp, Belgiumen_US
dc.identifier.pmid2912714en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65188/1/j.1528-1157.1989.tb05275.x.pdf
dc.identifier.doi10.1111/j.1528-1157.1989.tb05275.xen_US
dc.identifier.sourceEpilepsiaen_US
dc.identifier.citedreferenceBarnes DM, Dichter MA. Effects of ethosuximide and tetra-methyl-succinimide on cultured cortical neurons. Neurology 1984 ; 25 : 620 – 5.en_US
dc.identifier.citedreferenceBraestrup C., Nielsen M., Honore T., Jensen LH, PÉtÉrsen EN. Benzodiazepine receptor ligands with positive and negative efficacy. Neuropharmacology 1983 ; 22 : 1451 – 7.en_US
dc.identifier.citedreferenceBuchhalter JR, Dichter MA. Effects of valproic acid in cultured mammalian neurons. Neurology 1986 ; 36 : 259 – 62.en_US
dc.identifier.citedreferenceChen G., Weston JK, Bratton AC Jr. Anticonvulsant activity and toxicity of phensuximide, methsuximide and ethosuximide. Epilepsia 1963 ; 4 : 66 – 76.en_US
dc.identifier.citedreferenceChoi DW, Farb DH, Fischbach GD. Chlordiazepoxide selectively augments GABA action in spinal cord cell cultures. Nature 1977 ; 269 : 342 – 1.en_US
dc.identifier.citedreferenceCurtis DR, Duggan AW, Felix D., Johnston GAR. Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord of the cat. Brain Res 1971 ; 32 : 69 – 96.en_US
dc.identifier.citedreferenceCurtis DR, Game CJA, Johnston GAR, McCulloch RM, Mac-Lachlan RM. Convulsive action of penicillin. Brain Res 1972 ; 43 : 242 – 5.en_US
dc.identifier.citedreferencede Deyn PP, Macdonald RL. CGS 9896 and ZK 91296, but not CGS 8216 and Ro 15–1788, are pure benzodiazepine receptor antagonists on mouse neurons in cell culture. J Pharmacol Exp Ther 1987 ; 242 : 48 – 55.en_US
dc.identifier.citedreferencede Deyn PP, Marescau B., Macdonald RL. Effects of a-keto-8-guanidinovaleric acid on inhibitory amino acid responses in mouse neurons in cell culture. Brain Res 1988 ; 449 : 54 – 60.en_US
dc.identifier.citedreferenceEadie MJ, Tyrer JH. Anticonvulsant therapy. Edinburgh : Churchill-Livingstone, 1980.en_US
dc.identifier.citedreferenceEccles JC, Schmidt R., Willis WD. Pharmacological studies on presynaptic inhibition. J Physiol 1973 ; 168 : 500 – 30.en_US
dc.identifier.citedreferenceGent JP, Phillips NI. Sodium di-n-propylacetate (valproate) potentiates responses to GABA and muscimol on single central neurons. Brain Res 1980 ; 197 : 275 – 8.en_US
dc.identifier.citedreferenceGodin Y., Heiner L., Mark J., Mandel P.. Effects of di-n-propyl-acetate, an anticonvulsant compound, on GABA metabolism. J Neurochem 1969 ; 19 : 869 – 73.en_US
dc.identifier.citedreferenceGugler R., Schell A., Eichelbaum M., Froscher W., Shulz HV. Disposition of valproic acid in man. Eur J Clin Pharmacol 1977 ; 12 : 125 – 32.en_US
dc.identifier.citedreferenceGuidotti A., Forchetti CM, Ebstein B., Costa E.. Purification and characterization of an endogenous peptide putative effector for the benzodiazepine recognition site. In : Tallman, JF, eds. Pharmacology of benzodiazepines. London : MacmiUan, 1982 : 529 – 35.en_US
dc.identifier.citedreferenceHaefely W., Pieri L., Pole P., Schasffner R.. General pharmacology and neuropharmacology of benzodiazepine derivatives. In : Hoffmeister F., Stille, G., eds. Handbook of experimental pharmacology, Vol 55. Berlin, Springer-Verlag, 1981 : 13 – 262.en_US
dc.identifier.citedreferenceHammond EJ, Wilder BJ. Gamma-vinyl GABA: a new antiepi-leptic drug. Clin Neuropharmacol 1985 ; 8 : 1 – 12.en_US
dc.identifier.citedreferenceHarrison NL, Simmonds MA. Sodium valproate enhances responses to GABA receptor activation only at high concentrations. Brain Res 1982 ; 250 : 201 – 4.en_US
dc.identifier.citedreferenceHill RG, Simmonds MA. A method for comparing the potencies of Γ-aminobutyric acid antagonists on single cortical neurons using microiontophoretic techniques. Br J Pharmacol 1973 ; 48 : 1 – 11.en_US
dc.identifier.citedreferenceHill RG, Simmonds MA, Straughan DW. Antagonism of GABA by picrotoxin in the feline cerebral cortex. Br J Pharmacol 1972 ; 49 : 37 – 51.en_US
dc.identifier.citedreferenceIadarola MJ, Gale K.. Dissociation between drug-induced increase in nerve terminal and non-nerve terminal pools of GABA in vivo. Eur J Pharmacol 1979 ; 59 : 125 – 9.en_US
dc.identifier.citedreferenceJensen MS, Lambert JDC. The interaction of the Β-carboline derivative DMCM with inhibitory amino acid responses on cultured mouse neurons. Neurosci Lett 1983 ; 40 : 175 – 9.en_US
dc.identifier.citedreferenceEpilepsia, Vol. 30, No. I. 1989.en_US
dc.identifier.citedreferenceJohnston GAR, Willow M.. Barbiturates and GABA receptors. Costa E., di Chiara, G., Gessa, GL, eds. GABA and benzodiazepine receptors. New York : Raven Press, 1981 : 191 – 8.en_US
dc.identifier.citedreferenceKlockgether T., Schwarz M., Turski L., Sontag K-H. ZK 912%, an anticonvulsant Β-carboline which lacks muscle relaxant properties. Eur J Pharmacol 1985 ; 110 : 309 – 15.en_US
dc.identifier.citedreferenceKrall RL, Penry JK, White, BG, et al. Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 1978 ; 19 : 409 – 28.en_US
dc.identifier.citedreferenceLloyd KG, Munari C., Bossi, L., et al. Biochemical evidence for the alterations of GABA-mediated synaptic transmission in pathological brain tissue (stereo EEG or morphological definition) from epileptic patients. Morselli PL, Lloyd KG, Lo-scher, W., eds. Neurotransmitters, seizures and epilepsy. New York : Raven Press, 1981 : 325 – 38.en_US
dc.identifier.citedreferenceMacdonald RL, Barker JL. PentylenÉtÉtrazol and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurons. Nature 1977 ; 267 : 720 – 1.en_US
dc.identifier.citedreferenceMacdonald RL, Barker JL Specific antagonism of GABA-mediated postsynaptic inhibition in cultured mammalian spinal cord neurons: a common mode of convulsant action. Neurology 1978a, 28 : 325 – 30.en_US
dc.identifier.citedreferenceMacdonald RL, Barker JL. Benzodiazepines specifically modulate GABA-mediated postsynaptic inhibition in cultured mammalian neurons. Nature 1978b ; 271 : 563 – 4.en_US
dc.identifier.citedreferenceMacdonald RL, Barker JL. Enhancement of GABA-mediated postsynaptic inhibition in cultured mammalian neurons. Brain Res 1979 ; 167 : 323 – 36.en_US
dc.identifier.citedreferenceMacdonald RL, Bergey GK. Valproic acid augments GABA-mediated post-synaptic inhibition in cultured mammalian neurons. Brain Res 1979 ; 170 : 558 – 62.en_US
dc.identifier.citedreferenceMacdonald RL, McLean MJ. Anticonvulsant drugs: mechanisms of action. In : Basic mechanisms of the epilepsies. Del-gado-Escueta AV, Ward, AA, Woodbury DM, Porter, RJ, eds. New York : Raven Press, 1986 : 713 – 36 ( Advances in neurology; vol. 44 ).en_US
dc.identifier.citedreferenceMacdonald RL, Skerritt JH, McLean MJ. Anticonvulsant drug actions on GABA responses and sustained repetitive firing of neurons in cell culture. Neuropharmacology 1984 ; 23 : 843 – 4.en_US
dc.identifier.citedreferenceMacdonald RL, McLean MJ, Skerritt JH. Anticonvulsant drug mechanisms of action. Fed Proc 1985 ; 44 : 2634 – 9.en_US
dc.identifier.citedreferenceMcLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J. Pharmacol Exp Ther 1986 ; 237 : 1001 – 11.en_US
dc.identifier.citedreferenceMeldrum B.. Convulsant drugs, anticonvulsants and GABA-mediated neuronal inhibition. In : Krogsgaard-Larsen P., Scheel-Kruger J., Kofod, H., eds. GABA-neurotransmitters. Copenhagen : Munksgaard, 1979 : 390 – 405.en_US
dc.identifier.citedreferenceNicoll RA. The effects of anesthetics on synaptic excitation and inhibition in the olfactory bulb. J Physiol 1972 ; 223 : 803 – 14.en_US
dc.identifier.citedreferenceNowak LM, Young AB, Macdonald RL. GABA and bicuculline actions on mouse spinal cord and cortical neurons in cell culture. Brain Res 1982 ; 244 : 155 – 64.en_US
dc.identifier.citedreferenceOlsen RW. The GABA postsynaptic membrane receptor-ionophore complex: site of action of convulsant and anticonvulsant drugs. Mol Cell Biochem 1981 ; 39 : 261 – 79.en_US
dc.identifier.citedreferenceOlsen RW, Leeb-Lundberg F.. Convulsant and anticonvulsant drug binding sites related to GABA-regulated chloride ion channels. In : di Chiara, G. and Gessa, GL, eds. GABA and benzodiazepine receptors. New York : Raven Press, 1981 : 93 – 102.en_US
dc.identifier.citedreferencePellmar TC and Wilson WA. Synaptic mechanism of pentylene-tetrazole: selectivity for chloride conductance. Science 1977 ; 197 : 912 – 4.en_US
dc.identifier.citedreferencePÉtÉrsen EN. DMCM: Potent convulsive benzodiazepine receptor Iigand. Eur J Pharmacol 1983 ; 94 : 117 – 24.en_US
dc.identifier.citedreferencePÉtÉrsen EN, Jensen LH, Honore, T., et al. ZK 91296, a partial agonist at the benzodiazepine receptors. Psychopharmacology 1984 ; 83 : 240 – 8.en_US
dc.identifier.citedreferencePetrack B., Czernik AJ, Cassidy, JP, et al. Benzodiazepine receptor ligands with opposing pharmacologic actions. Psycho-pharmacology 1983 ; 38 : 129 – 37.en_US
dc.identifier.citedreferenceRansom BR, Neale E., Henkart, M., et al. Mouse spinal cord in cell culture. I. Morphology and intrinsic neuronal electrophysiologic properties. J Neurophysiol 1977 ; 40 : 1132 – 50.en_US
dc.identifier.citedreferenceRoberts E.. Epilepsy and antiepileptic drugs: a speculative synthesis. In : Glaser GH, Penry JK, Woodbury, DM, eds. Anti-epileptic drugs: mechanisms of action. New York : Raven Press, 1980 : 667 – 713.en_US
dc.identifier.citedreferenceSchofield PR, Darlison MG, Fujita, N., et al. Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family. Nature 1987 ; 328 : 221 – 7.en_US
dc.identifier.citedreferenceSchulz DW, Macdonald RL. Barbiturate enhancement of GABA-mediated inhibition and activation of chloride ion conductance: correlation with anticonvulsant and anesthetic actions. Brain Res 1981 ; 109 : 177 – 88.en_US
dc.identifier.citedreferenceSherwin AL. Ethosuximide. Relation of plasma concentration to seizure control. In : Woodbury DM, Penry JK, Pippenger, CE, eds. Antiepileptic drugs. 2nd Ed. New York, Raven Press, 1982 : 637 – 45.en_US
dc.identifier.citedreferenceSimler S., Ziesielski L., Maitre, M., et al. Effect of sodium di-n-propylacetate on audiogenic seizures and brain gamma-aminobutyric acid level. Biochem Pharmacol 1973 ; 22 : 1701 – 8.en_US
dc.identifier.citedreferenceSkerritt JH, Macdonald RL. Benzodiazepine receptor ligand actions on GABA-responses. p-carbolines, purines. Eur J Pharmacol 1984 ; 101 : 135 – 41.en_US
dc.identifier.citedreferenceSkerritt JH, Werz MA, McLean MJ, Macdonald RL. Diazepam and its anomalous p-chloro-derivative Ro 5–4864: Comparative effects on mouse neurons in cell culture. Brain Res 1984 ; 310 : 99 – 105.en_US
dc.identifier.citedreferenceSwinyard EA. Laboratory evaluation of antiepileptic drugs. Epilepsia 1969 ; 10 : 107 – 19.en_US
dc.identifier.citedreferenceVÖlzke E., Doose H.. Dipropylacetate (Depakine, Ergenyl) in the treatment of epilepsy. Epilepsia 1973 ; 14 : 185 – 93.en_US
dc.identifier.citedreferenceWilder BJ and Karas BJ. Valproate-relation of plasma concentration to seizure control. In : Woodbury DM, Penry JK, Pippenger, CE, eds. Antiepileptic drugs, 2nd Ed., New York : Raven Press, 1982 : 591 – 8.en_US
dc.identifier.citedreferenceYonekawa WD, Kupferberg HJ, Woodbury DM. Relationship between pentylenÉtÉtrazol-induced seizures and brain pentylenÉtÉtrazol levels in mice. J Pharmacol Exp Ther 1980 ; 214 : 589 – 93.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.