Show simple item record

Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance

dc.contributor.authorFisher, Stephen K.en_US
dc.contributor.authorNovak, James E.en_US
dc.contributor.authorAgranoff, Bernard W.en_US
dc.date.accessioned2010-04-01T14:45:16Z
dc.date.available2010-04-01T14:45:16Z
dc.date.issued2002-08en_US
dc.identifier.citationFisher, Stephen K.; Novak, James E.; Agranoff, Bernard W. (2002). "Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance." Journal of Neurochemistry 82(4): 736-754. <http://hdl.handle.net/2027.42/65201>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65201
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12358779&dopt=citationen_US
dc.description.abstractInositol phospholipids and inositol phosphates mediate well-established functions in signal transduction and in Ca 2+ homeostasis in the CNS and non-neural tissues. More recently, there has been renewed interest in other roles that both myo -inositol and its highly phosphorylated forms may play in neural function. We review evidence that myo -inositol serves as a clinically relevant osmolyte in the CNS, and that its hexakisphosphate and pyrophosphorylated derivatives may play roles in such diverse cellular functions as DNA repair, nuclear RNA export and synaptic membrane trafficking.en_US
dc.format.extent239275 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2002 International Society for Neurochemistryen_US
dc.subject.otherAffective Disorder and Treatmenten_US
dc.subject.otherDiphosphoinositol Polyphosphatesen_US
dc.subject.otherInositol Hexakisphosphateen_US
dc.subject.otherLithiumen_US
dc.subject.otherNa +en_US
dc.subject.otherMyo-inositol Transporteren_US
dc.subject.otherPhytateen_US
dc.titleInositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significanceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Biochemistry and Psychiatry, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother* Mental Health Research Institute, and Departments ofen_US
dc.contributor.affiliationother† Pharmacology, anden_US
dc.identifier.pmid12358779en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65201/1/j.1471-4159.2002.01041.x.pdf
dc.identifier.doi10.1046/j.1471-4159.2002.01041.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAcevedo L. D., Holloway H. W., Rapoport S. I. and Shetty H. U. ( 1997 ) Application of stable isotope tracer combined with mass spectrometric detection for studying myo -inositol uptake by cultured neurons from fetal mouse: effect of trisomy 16. J. Mass Spectrom. 32, 395 – 400.en_US
dc.identifier.citedreferenceAgranoff B. W. and Fisher S. K. ( 2001 ) Inositol, lithium and the brain. Psychopharmacol. Bull. 35, 5 – 18.en_US
dc.identifier.citedreferenceAlbert C., Safrany S. T., Bembenek M. E., Reddy K. M., Reddy K., Falck J., Brocker M., Shears S. B. and Mayr G. W. ( 1997 ) Biological variability in the structures of diphosphoinositol polyphosphates in Dictyostelium discoideum and mammalian cells. Biochem. J. 327, 553 – 560.en_US
dc.identifier.citedreferenceAli N., Duden R., Bembenek M. E. and Shears S. B. ( 1995 ) The interaction of coatomer with inositol polyphosphates is conserved in Saccharomyces cerevisiae. Biochem. J. 310, 279 – 284.en_US
dc.identifier.citedreferenceAllison J. H. and Stewart M. A. ( 1971 ) Reduced brain inositol in lithium-treated rats. Nat. New Biol. 233, 267 – 268.en_US
dc.identifier.citedreferenceAllison J. H., Blisner M. E., Holland W. H., Hipps P. P. and Sherman W. R. ( 1976 ) Increased brain myo -inositol 1-phosphate in lithium-treated rats. Biochem. Biophys. Res. Commun. 71, 664 – 670.en_US
dc.identifier.citedreferenceArner R. J., Prabhu K. S., Thompson J. T., Hildenbrandt G. R., Liken A. D. and Reddy C. C. ( 2001 ) myo -Inositol oxygenase. molecular cloning and expression of a unique enzyme that oxidizes myo -inositol and d- chiro -inositol. Biochem. J. 360, 313 – 320.en_US
dc.identifier.citedreferenceBarak Y., Levine J., Glasman A., Elizur A. and Belmaker R. H. ( 1996 ) Inositol treatment of Alzheimer's disease: a double blind, cross-over placebo controlled trial. Prog. Neuropsychopharmaco. Biol. Psychiatry 20, 729 – 735.en_US
dc.identifier.citedreferenceBarkai A. I., Dunner D. L., Gross H. A., Mayo P. and Fieve R. R. ( 1978 ) Reduced myo -inositol levels in cerebrospinal fluid from patients with affective disorder. Biol. Psychiatry 13, 65 – 72.en_US
dc.identifier.citedreferenceBattaglia F. C., Meschia G., Blechner J. N. and Barron D. H. ( 1961 ) The free myo -inositol concentration of adult and fetal tissues of several species. Quart. J. Exp. Physiol. 46, 188 – 193.en_US
dc.identifier.citedreferenceBatty I. and Nahorski S. R. ( 1985 ) Differential effects of lithium on muscarinic receptor stimulation of inositol phosphates in rat cerebral cortex slices. J. Neurochem. 45, 1514 – 1521.en_US
dc.identifier.citedreferenceBatty I. H., Michie A., Fennel M. and Downes C. P. ( 1993 ) The characteristics, capacity and receptor regulation of inositol uptake in 1321N1 astrocytoma cells. Biochem. J. 294, 49 – 55.en_US
dc.identifier.citedreferenceBelmaker R. H., Agam G., van Calker D., Richards M. H. and Kofman O. ( 1998 ) Behavioral reversal of lithium effects by four inositol isomers correlates perfectly with biochemical effects on the PI cycle: depletion by chronic lithium of brain inositol is specific to hypothalamus, and inositol levels may be abnormal in postmortem brain from bipolar patients. Neuropsychopharmacology 19, 220 – 232.en_US
dc.identifier.citedreferenceBenjamin J., Levine J., Fux M., Aviv A., Levy D. and Belmaker R. H. ( 1995 ) Double-blind, placebo-controlled, crossover trial of inositol treatment for panic disorder. Am. J. Psychiatry 152, 1084 – 1086.en_US
dc.identifier.citedreferenceBenjamins J. A. and Agranoff B. W. ( 1969 ) Distribution and properties of CDP-diglyceride: inositol transferase from brain. J. Neurochem. 16, 513 – 527.en_US
dc.identifier.citedreferenceBerridge M. J. ( 1987 ) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Ann. Rev. Biochem. 56, 159 – 193.en_US
dc.identifier.citedreferenceBerridge M. J., Downes C. P. and Hanley M. R. ( 1982 ) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587 – 595.en_US
dc.identifier.citedreferenceBerridge M. J., Downes C. P. and Hanley M. R. ( 1989 ) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59, 411 – 419.en_US
dc.identifier.citedreferenceBerry G. T., Mallee J. J., Kwon H. M., Rim J. S., Mulla W. R., Muenke M. and Spinner N. B. ( 1995 ) The human osmoregulatory Na + / myo -inositol cotransporter gene (SLC5A3): molecular cloning and localization to chromosome 21. Genomics 25, 507 – 513.en_US
dc.identifier.citedreferenceBerry G. T., Wang Z. J., Dreha S. F., Finucane B. M. and Zimmerman R. A. ( 1999 ) In vivo brain myo -inositol levels in children with Down syndrome. J. Pediatr. 135, 94 – 97.en_US
dc.identifier.citedreferenceBitoun M. and Tappaz M. ( 2000 ) Gene expression of taurine transporter and taurine biosynthetic enzymes in brain of rats with acute or chronic hyperosmotic plasma. A comparative study with gene expression of myo-inositol transporter, betaine transporter and sorbitol biosynthetic enzyme. Mol. Brain Res. 77, 10 – 18.en_US
dc.identifier.citedreferenceBouveault L. ( 1894 ) De l'isomÉrie optique dans les corps À chaines fermÉes. Bull. la SociÉtÉ Chimique Paris 11, 44 – 147.en_US
dc.identifier.citedreferenceBrand A., Richter-Landsberg C. and Leibfritz D. ( 1993 ) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev. Neurosci. 15, 289 – 298.en_US
dc.identifier.citedreferenceBusa W. B. and Gimlich R. L. ( 1989 ) Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog. Dev. Biol. 132, 315 – 324.en_US
dc.identifier.citedreferenceCaffrey J. J., Safrany S. T., Yang X. and Shears S. B. ( 2000 ) Discovery of molecular and catalytic diversity among human diphosphoinositol-polyphosphate phosphohydrolases. An expanding Nudt family. J. Biol. Chem. 275, 12730 – 12736.en_US
dc.identifier.citedreferenceCharalampous F. C. ( 1958 ) Biochemical studies on inositol. V. Purification and properties of the enzyme that cleaves inositol to d-glucuronic acid. J. Biol. Chem. 234, 220 – 227.en_US
dc.identifier.citedreferenceClements R. S. Jr and Diethelm A. G. ( 1979 ) The metabolism of myo -inositol by the human kidney. J. Laboratory Clin. Med. 93, 210 – 219.en_US
dc.identifier.citedreferenceCoady M. J., Pajor A. M. and Wright E. M. ( 1990 ) Sequence homologies among intestinal and renal Na + /glucose cotransporters. Am. J. Physiol. 259, C605 – C610.en_US
dc.identifier.citedreferenceCosgrove D. J. ( 1980 ) Inositol Phosphates p. 15. Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceCraxton A., Caffrey J. J., Burkhart W., Safrany S. T. and Shears S. B. ( 1997 ) Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. Biochem. J. 328, 75 – 81.en_US
dc.identifier.citedreferenceCulbertson M. R., Donahue T. F. and Henry S. A. ( 1976 ) Control of inositol biosynthesis in Saccharomyces cerevisiae : properties of a repressible enzyme system in extracts of wild-type ( Ino + ) cells. J. Bacteriol. 126, 232 – 242.en_US
dc.identifier.citedreferenceEagle H., Agranoff B. W. and Snell S. E. ( 1960 ) The biosynthesis of meso-inositol by cultured mammalian cells, and the parabiotic growth of inositol-dependent and inositol-independent strains. J. Biol. Chem. 235, 1891 – 1893.en_US
dc.identifier.citedreferenceEastcott V. ( 1928 ) Wildiers' bios: the isolation and identification of ‘bios I.’. J. Phys. Chem. 32, 1094 – 1111.en_US
dc.identifier.citedreferenceEichberg J. and Dawson R. M. ( 1965 ) Polyphosphoinositides in myelin. Biochem. J. 96, 644 – 650.en_US
dc.identifier.citedreferenceEisenberg F. Jr ( 1967 ) d-myoinositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. J. Biol. Chem. 242, 1375 – 1382.en_US
dc.identifier.citedreferenceEurope-Finner G. N., Gammon B. and Newell P. C. ( 1991 ) Accumulation of [ 3 H]-inositol into inositol polyphosphates during development of Dictyostelium. Biochem. Biophys. Res. Commun. 181, 191 – 196.en_US
dc.identifier.citedreferenceFeng Y., Wente S. R. and Majerus P. W. ( 2001 ) Overexpression of the inositol phosphatase SopB in human 293 cells stimulates cellular chloride influx and inhibits nuclear mRNA export. Proc. Natl Acad. Sci. USA 98, 875 – 879.en_US
dc.identifier.citedreferenceFisher S. K. and Agranoff B. W. ( 1987 ) Receptor activation and inositol lipid hydrolysis in neural tissues. J. Neurochem. 48, 999 – 1017.en_US
dc.identifier.citedreferenceFisher S. K., Heacock A. M. and Agranoff B. W. ( 1992 ) Inositol lipids and signal transduction in the nervous system: an update. J. Neurochem. 58, 18 – 38.en_US
dc.identifier.citedreferenceFleischer B., Xie J., Mayrleitner M., Shears S. B., Palmer D. J. and Fleischer S. ( 1994 ) Golgi coatomer binds, and forms K + -selective channels gated by inositol polyphosphates. J. Biol. Chem. 269, 17826 – 17832.en_US
dc.identifier.citedreferenceFolch J. and Woolley D. W. ( 1942 ) Inositol, a constituent of a brain phosphatide. J. Biol. Chem. 142, 963 – 964.en_US
dc.identifier.citedreferenceFruen B. R. and Lester B. R. ( 1991 ) High-affinity [ 3 H]inositol uptake by dissociated brain cells and cultured fibroblasts from fetal mice. Neurochem. Res. 16, 913 – 918.en_US
dc.identifier.citedreferenceFukuda M., Aruga J., Niinobe M., Aimoto S. and Mikoshiba K. ( 1994 ) Inositol-1,3,4,5-tetrakisphosphate binding to C2B domain of IP 4 BP/synaptotagmin II. J. Biol. Chem. 269, 29206 – 29211.en_US
dc.identifier.citedreferenceFux M., Levine J., Aviv A. and Belmaker R. H. ( 1996 ) Inositol treatment of obsessive compulsive disorder. Am. J. Psychiatry 153, 1219 – 1221.en_US
dc.identifier.citedreferenceGaidarov I., Chen Q., Falck J. R., Reddy K. K. and Keen J. H. ( 1996 ) A functional phosphatidylinositol 3,4,5-trisphosphate/phosphoinositide binding domain in the clathrin adaptor AP-2 α subunit. Implications for the endocytic pathway. J. Biol. Chem. 271, 20922 – 20929.en_US
dc.identifier.citedreferenceGaidarov I., Krupnick J. G., Falck J. R., Benovic J. L. and Keen J. H. ( 1999 ) Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J. 18, 871 – 881.en_US
dc.identifier.citedreferenceGhalayini A. and Eichberg J. ( 1985 ) Purification of phosphatidylinositol synthetase from rat brain by CDP-diacylglycerol affinity chromatography and properties of the purified enzyme. J. Neurochem. 44, 175 – 182.en_US
dc.identifier.citedreferenceGillon K. R. and Hawthorne J. N. ( 1983 ) Transport of myo -inositol into endoneurial preparations of sciatic nerve from normal and streptozotocin-diabetic rats. Biochem. J. 210, 775 – 781.en_US
dc.identifier.citedreferenceGlanville N. T., Byers D. M., Cook H. W., Spence M. W. and Palmer F. B. ( 1989 ) Differences in the metabolism of inositol and phosphoinositides by cultured cells of neuronal and glial origin. Biochim. Biophys. Acta. 1004, 169 – 179.en_US
dc.identifier.citedreferenceGlennon M. C. and Shears S. B. ( 1993 ) Turnover of inositol pentakisphosphates, inositol hexakisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes. Biochem. J. 293, 583 – 590.en_US
dc.identifier.citedreferenceGodfrey P. P. ( 1989 ) Potentiation by lithium of CMP-phosphatidate formation in carbachol-stimulated rat cerebral-cortical slices and its reversal by myo-inositol. Biochem. J. 258, 621 – 624.en_US
dc.identifier.citedreferenceGodfrey D. A., Hallcher L. M., Laird M. H., Matschinsky F. M. and Sherman W. R. ( 1982 ) Distribution of myo -inositol in the cat cochlear nucleus. J. Neurochem. 38, 939 – 947.en_US
dc.identifier.citedreferenceGoldstein L. and Davis E. ( 1994 ) Taurine, betaine, and inositol share a volume-sensitive transporter in skate erythrocyte cell membrane. Am. J. Physiol. 267, R426 – R431.en_US
dc.identifier.citedreferenceGonzÁlez E., SÁnchez-Olea R. and Pasantes-Morales H. ( 1995 ) Inhibition by Cl – channel blockers of the volume-activated, diffusional mechanism of inositol transport in primary astrocytes in culture. Neurochem. Res. 20, 895 – 900.en_US
dc.identifier.citedreferenceGraf E., Empson K. L. and Eaton J. W. ( 1987 ) Phytic acid. A natural antioxidant. J. Biol. Chem. 262, 11647 – 11650.en_US
dc.identifier.citedreferenceGrases F., GarcÍa-Gonzalez R., Torres J. J. and Llobera A. ( 1998 ) Effects of phytic acid on renal stone formation in rats. Scand. J. Urol. Nephrol. 32, 262 – 265.en_US
dc.identifier.citedreferenceGray D. W., Challiss R. A. and Nahorski S. R. ( 1994 ) Differential effects of lithium on muscarinic cholinoceptor-stimulated CMP-phosphatidate accumulation in cerebellar granule cells, CHO-M3 cells, and SH-SY5Y neuroblastoma cells. J. Neurochem. 63, 1354 – 1360.en_US
dc.identifier.citedreferenceGreene N. D. and Copp A. J. ( 1997 ) Inositol prevents folate-resistant neural tube defects in the mouse. Nat. Med. 3, 60 – 66.en_US
dc.identifier.citedreferenceGreene D. A. and Lattimer S. A. ( 1982 ) Sodium- and energy-dependent uptake of myo -inositol by rabbit peripheral nerve. J. Clin. Invest. 70, 1009 – 1018.en_US
dc.identifier.citedreferenceGullans S. R. and Verbalis J. G. ( 1993 ) Control of brain volume during hyperosmolar and hypoosmolar conditions. Annu. Rev. Med. 44, 289 – 301.en_US
dc.identifier.citedreferenceGuo W., Shimada S., Tajiri H., Yamauchi A., Yamashita T., Okada S. and Tohyama M. ( 1997 ) Developmental regulation of Na + / myo -inositol cotransporter gene expression. Brain Res. Mol. Brain Res. 51, 91 – 96.en_US
dc.identifier.citedreferenceHager K., Hazama A., Kwon H. M., Loo D. D., Handler J. S. and Wright E. M. ( 1995 ) Kinetics and specificity of the renal Na + / myo -inositol cotransporter expressed in Xenopus oocytes. J. Membr. Biol. 143, 103 – 113.en_US
dc.identifier.citedreferenceHallcher M. and Sherman W. R. ( 1980 ) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255, 10896 – 10901.en_US
dc.identifier.citedreferenceHanakahi L. A., Bartlet-Jones M., Chappell C., Pappin D. and West S. C. ( 2000 ) Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102, 721 – 729.en_US
dc.identifier.citedreferenceHauser G. and Finelli V. N. ( 1963 ) The biosynthesis of free and phosphatide myo -inositol from glucose in mammalian tissues. J. Biol. Chem. 238, 3224 – 3228.en_US
dc.identifier.citedreferenceHaussinger D., Laubenberger J., vom Dahl S., Ernst T., Bayer S., Langer M., Gerok W. and Hennig J. ( 1994 ) Proton magnetic resonance spectroscopy studies on human brain myo -inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107, 1475 – 1480.en_US
dc.identifier.citedreferenceHeacock A. M., Seguin E. B. and Agranoff B. W. ( 1993 ) Measurement of receptor-activated phosphoinositide turnover in rat brain: nonequivalence of inositol phosphate and CDP-diacylglycerol formation. J. Neurochem. 60, 1087 – 1092.en_US
dc.identifier.citedreferenceHediger M. A., Coady M. J., Ikeda T. S. and Wright E. M. ( 1987 ) Expression cloning and cDNA sequencing of the Na + /glucose co-transporter. Nature 330, 379 – 381.en_US
dc.identifier.citedreferenceHilton J. M., Plomann M., Ritter B., Modregger J., Freeman H. N., Falck J. R., Krishna U. M. and Tobin A. B. ( 2001 ) Phosphorylation of a synaptic vesicle-associated protein by an inositol hexakisphosphate-regulated protein kinase. J. Biol. Chem. 276, 16341 – 16347.en_US
dc.identifier.citedreferenceHÖer A., HÖer D. and Oberdisse E. ( 1990 ) Properties of a soluble inositol 1,3,4,5-tetrakisphosphate 3-phosphatase from porcine brain. Biochem. J. 270, 715 – 719.en_US
dc.identifier.citedreferenceHokin M. R. and Hokin L. E. ( 1953 ) Enzyme secretion and the incorporation of P 32 into phospholipides of pancreas slices. J. Biol. Chem. 203, 967 – 977.en_US
dc.identifier.citedreferenceHokin L. and Hokin M. R. ( 1955 ) Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim. Biophys. Acta 18, 102 – 110.en_US
dc.identifier.citedreferenceHolub B. J. ( 1986 ) Metabolism and function of myo -inositol and inositol phospholipids. Annu. Rev. Nutr. 6, 563 – 597.en_US
dc.identifier.citedreferenceHua L. V., Green M., Warsh J. J. and Li P. P. ( 2001 ) Molecular cloning of a novel isoform of diphosphoinositol polyphosphate phosphohydrolase: a potential target of lithium therapy. Neuropsychopharmacology 24, 640 – 651.en_US
dc.identifier.citedreferenceHuang C. F., Voglmaier S. M., Bembenek M. E., Saiardi A. and Snyder S. H. ( 1998 ) Identification and purification of diphosphoinositol pentakisphosphate kinase, which synthesizes the inositol pyrophosphate bis (diphospho) inositol tetrakisphosphate. Biochemistry 37, 14998 – 15004.en_US
dc.identifier.citedreferenceHuang W., Alexander G. E., Daly E. M., Shetty H. U., Krasuski J. S., Rapoport S. I. and Schapiro M. B. ( 1999 ) High brain myo -inositol levels in the predementia phase of Alzheimer's disease in adults with Down's syndrome: a 1 H MRS study. Am. J. Psychiatry 156, 1879 – 1886.en_US
dc.identifier.citedreferenceIbsen L. and Strange K. ( 1996 ) In situ localization and osmotic regulation of the Na + - myo -inositol cotransporter in rat brain. Am. J. Physiol. 271, F877 – F885.en_US
dc.identifier.citedreferenceImai A. and Gershengorn M. C. ( 1987 ) Independent phosphatidylinositol synthesis in pituitary plasma membrane and endoplasmic reticulum. Nature 325, 726 – 728.en_US
dc.identifier.citedreferenceInoue K., Shimada S., Minami Y., Morimura H., Miyai A., Yamauchi A. and Tohyama M. ( 1996 ) Cellular localization of Na + /MYO-inositol co-transporter mRNA in the rat brain. Neuroreport 7, 1195 – 1198.en_US
dc.identifier.citedreferenceIrvine R. F. and Schell M. J. ( 2001 ) Back in the water: the return of the inositol phosphates. Nat. Rev. Mol. Cell Biol. 2, 327 – 338.en_US
dc.identifier.citedreferenceIsaacks R. E., Bender A. S., Kim C. Y. and Norenberg M. D. ( 1997 ) Effect of osmolality and myo -inositol deprivation on the transport properties of myo -inositol in primary astrocyte cultures. Neurochem. Res. 22, 1461 – 1469.en_US
dc.identifier.citedreferenceIsaacks R. E., Bender A. S., Kim C. Y., Prieto N. M. and Norenberg M. D. ( 1994 ) Osmotic regulation of myo -inositol uptake in primary astrocyte cultures. Neurochem. Res. 19, 331 – 338.en_US
dc.identifier.citedreferenceIsaacks R. E., Bender A. S., Kim C. Y., Shi Y. F. and Norenberg M. D. ( 1999a ) Effect of osmolality and anion channel inhibitors on myo -inositol efflux in cultured astrocytes. J. Neurosci. Res. 57, 866 – 871.en_US
dc.identifier.citedreferenceIsaacks R. E., Bender A. S., Kim C. Y., Shi Y. F. and Norenberg M. D. ( 1999b ) Effect of ammonia and methionine sulfoximine on myo -inositol transport in cultured astrocytes. Neurochem. Res. 24, 51 – 59.en_US
dc.identifier.citedreferenceIsaacks R. E., Bender A. S., Reuben J. S., Kim C. Y., Shi Y. F. and Norenberg M. D. ( 1999c ) Effect of dibutyryl cyclic AMP on the kinetics of myo -inositol transport in cultured astrocytes. J. Neurochem. 73, 105 – 111.en_US
dc.identifier.citedreferenceIUPAC-IUB Commission on Biochemical Nomenclature (CBN). ( 1992 ) Numbering of atoms in myo -inositol, in Biochemical Nomenclature and Related Documents, 2nd edn, pp. 156 – 157. Portland Press, London.en_US
dc.identifier.citedreferenceIves E. B., Nichols J., Wente S. R. and York J. D. ( 2000 ) Biochemical and functional characterization of inositol 1,3,4,5,6-pentakisphosphate 2-kinases. J. Biol. Chem. 275, 36575 – 36583.en_US
dc.identifier.citedreferenceJackson P. S. and Madsen J. R. ( 1997 ) Identification of the volume-sensitive organic osmolyte/anion channel in human glial cells. Pediatr. Neurosurg. 27, 286 – 291.en_US
dc.identifier.citedreferenceJackson P. S. and Strange K. ( 1993 ) Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am. J. Physiol. 265, C1489 – C1500.en_US
dc.identifier.citedreferenceJackson P. S., Morrison R. and Strange K. ( 1994 ) The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding. Am. J. Physiol. 267, C1203 – C1209.en_US
dc.identifier.citedreferenceJariwalla R. J. ( 1999 ) Inositol hexaphosphate (IP 6 ) as an anti-neoplastic and lipid-lowering agent. Anticancer Res. 19, 3699 – 3702.en_US
dc.identifier.citedreferenceJenkinson S., Nahorski S. R. and Challiss R. A. ( 1994 ) Disruption by lithium of phosphatidylinositol-4,5-bisphosphate supply and inositol-1,4,5-trisphosphate generation in Chinese hamster ovary cells expressing human recombinant m 1 muscarinic receptors. Mol. Pharmacol. 46, 1138 – 1148.en_US
dc.identifier.citedreferenceJohnson K., Barrientos L. G. Le L. and Murthy P. P. ( 1995 ) Application of two-dimensional total correlation spectroscopy for structure determination of individual inositol phosphates in a mixture. Anal. Biochem. 231, 421 – 431.en_US
dc.identifier.citedreferenceKarihaloo A., Kato K., Greene D. A. and Thomas T. P. ( 1997 ) Protein kinase and Ca 2+ modulation of myo -inositol transport in culturedretinal pigment epithelial cells. Am. J. Physiol. 273, C671 – C678.en_US
dc.identifier.citedreferenceKennedy E. D., Challiss R. A. and Nahorski S. R. ( 1989 ) Lithium reduces the accumulation of inositol polyphosphate second messengers following cholinergic stimulation of cerebral cortex slices. J. Neurochem. 53, 1652 – 1655.en_US
dc.identifier.citedreferenceKennedy E. D., Challiss R. A., Ragan C. I. and Nahorski S. R. ( 1990 ) Reduced inositol polyphosphate accumulation and inositol supply induced by lithium in stimulated cerebral cortex slices. Biochem. J. 67, 781 – 786.en_US
dc.identifier.citedreferenceKlein P. S. and Melton D. A. ( 1996 ) A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA 93, 8455 – 8459.en_US
dc.identifier.citedreferenceKoch S., Chen G., Santalucia J. Jr, Manji H. K. and Moore G. J. ( 1999 ) Abundant levels of myo -inositol in cells of human neuronal origin. Abstracts Soc. Neurosci. 25, p. 2207.en_US
dc.identifier.citedreferenceKouzuma T., Takahashi M., Endoh T., Kaneko R., Ura N., Shimamoto K. and Watanabe N. ( 2001 ) An enzymatic cycling method for the measurement of myo -inositol in biological samples. Clin. Chim. Acta 312, 143 – 151.en_US
dc.identifier.citedreferenceKwon H. M., Yamauchi A., Uchida S., Preston A. S., Garcia-Perez A., Burg M. B. and Handler J. S. ( 1992 ) Cloning of the cDNA for a Na + / myo -inositol cotransporter, a hypertonicity stress protein. J. Biol. Chem. 267, 6297 – 6301.en_US
dc.identifier.citedreferenceLang F., Busch G. L., Ritter M., VÖlkl H., Waldegger S., Gulbins E. and HÄussinger D. ( 1998 ) Functional significance of cell Volume regulatory mechanisms. Physiol. Rev. 78, 247 – 306.en_US
dc.identifier.citedreferenceLee C. H., Dixon J. F., Reichman M., Moummi C., Los G. and Hokin L. E. ( 1992 ) Li + increases accumulation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in cholinergically stimulated brain cortex slices in guinea pig, mouse and rat. The increases require inositol supplementation in mouse and rat but not in guinea pig. Biochem. J. 282, 377 – 385.en_US
dc.identifier.citedreferenceLee J. H., Arcinue E. and Ross B. D. ( 1994 ) Brief report: organic osmolytes in the brain of an infant with hypernatremia. N. Engl. J. Med. 331, 439 – 442.en_US
dc.identifier.citedreferenceLemtiri-Chlieh F., MacRobbie E. A. and Brearley C. A. ( 2000 ) Inositol hexakisphosphate is a physiological signal regulating the K + -inward rectifying conductance in guard cells. Proc. Natl Acad. Sci. USA 97, 8687 – 8692.en_US
dc.identifier.citedreferenceLevine J. ( 1997 ) Controlled trials of inositol in psychiatry. Eur. Neuropsychopharmacol. 7, 147 – 155.en_US
dc.identifier.citedreferenceLevine J., Gonzalves M., Barbam I., Stier S., Elizur A., Kofman O., and Belmaker R. H. ( 1993 ) Inositol 6 gm daily may be effective in depression but not in schizophrenia. Hum. Psychopharmacol. 8, 49 – 53.en_US
dc.identifier.citedreferenceLevine J., Barak Y., Gonzalves M., Elizur A., Schor H., Kofman O. and Belmaker R. H. ( 1995 ) Double blind study of inositol versus placebo in depression. Am. J. Psychiatry 152, 792 – 794.en_US
dc.identifier.citedreferenceLevine J., Aviram A., Holan A., Ring A., Barak Y. and Belmaker R. H. ( 1997 ) Inositol treatment of autism. J. Neural Transm. 104, 307 – 310.en_US
dc.identifier.citedreferenceLien Y. -H. H., Shapiro J. I. and Chan L. ( 1990 ) Effects of hypernatremia on organic brain osmoles. J. Clin. Invest. 85, 1427 – 1435.en_US
dc.identifier.citedreferenceLlinas R., Sugimori M., Lang E. J., Morita M., Fukuda M., Niinobe M. and Mikoshiba K. ( 1994 ) The inositol high-polyphosphate series blocks synaptic transmission by preventing vesicular fusion: a squid giant synapse study. Proc. Natl Acad. Sci. USA 91, 12990 – 12993.en_US
dc.identifier.citedreferenceLohr J. W., McReynolds J., Grimaldi T. and Acara M. ( 1988 ) Effect of acute and chronic hypernatremia on myoinositol and sorbitol concentration in rat brain and kidney. Life Sci. 43, 271 – 276.en_US
dc.identifier.citedreferenceLong C. ( 1961 ) Biochemists' Handbook p. 640. D. Van Nostrand Company, Inc, Princeton, New Jersey.en_US
dc.identifier.citedreferenceLow M. G. ( 2000 ) Glycosylphosphatidylinositol-anchored proteins and their phospholipases, in Biology of Phosphoinositides ( Cockcroft S., ed.), pp. 210 – 239. Oxford University Press, Oxford.en_US
dc.identifier.citedreferenceLubrich B., Spleiss O., Gebicke-Haerter P. J. and van Calker D. ( 2000 ) Differential expression, activity and regulation of the sodium/myo-inositol cotransporter in astrocyte cultures from different regions of the rat brain. Neuropharmacology. 39, 680 – 690.en_US
dc.identifier.citedreferenceMacGregor L. C. and Matschinsky F. M. ( 1984 ) An enzymatic fluorimetric assay for myo-inositol. Anal. Biochem. 141, 382 – 389.en_US
dc.identifier.citedreferenceMaeda T. and Eisenberg F. Jr ( 1980 ) Purification, structure, and catalytic properties of 1- myo -inositol-1-phosphate synthase from rat testis. J. Biol. Chem. 255, 8458 – 8464.en_US
dc.identifier.citedreferenceMaehama T. and Dixon J. E. ( 1998 ) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375 – 13378.en_US
dc.identifier.citedreferenceMartin J. B., Laussmann T., Bakker-Grunwald T., Vogel G. and Klein G. ( 2000 ) neo -Inositol polyphosphates in the amoeba Entamoeba histolytica. J. Biol. Chem. 275, 10134 – 10140.en_US
dc.identifier.citedreferenceMatskevitch J., Wagner C. A., Risler T., Kwon H. M., Handler J. S., Waldegger S., Busch A. E. and Lang F. ( 1998 ) Effect of extracellular pH on the myo -inositol transporter SMIT expressed in Xenopus oocytes. PflÜgers Arch. 436, 854 – 857.en_US
dc.identifier.citedreferenceMayr G. W. ( 1990 ) Mass determination of inositol phosphates by high-performance liquid chromatography with postcolumn complexometry (metal-dye detection), in Methods in Inositide Research ( Irvine R. F., ed.), pp. 83 – 108. Raven Press, New York.en_US
dc.identifier.citedreferenceMcLaurin J., Golomb R., Jurewicz A., Antel J. P. and Fraser P. E. ( 2000 ) Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid β peptide and inhibit Aβ-induced toxicity. J. Biol. Chem. 275, 18495 – 18502.en_US
dc.identifier.citedreferenceMenniti F. S., Miller R. N., Putney J. W. Jr and Shears S. B. ( 1993 ) Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J. Biol. Chem. 268, 3850 – 3856.en_US
dc.identifier.citedreferenceMoore C. M., Breeze J. L., Kukes T. J., Rose S. L., Dager S. R., Cohen B. M. and Renshaw P. F. ( 1999 ) Effects of myo-inositol ingestion on human brain myo-inositol levels: a proton magnetic resonance spectroscopic imaging study. Biol. Psychiatry 45, 1197 – 1202.en_US
dc.identifier.citedreferenceNonaka M., Yoshimine T., Kohmura E., Wakayama A., Yamashita T. and Hayakawa T. ( 1998 ) Changes in brain organic osmolytes in experimental cerebral ischemia. J. Neurol. Sci. 157, 25 – 30.en_US
dc.identifier.citedreferenceNonaka M., Kohmura E., Yamashita T., Yamauchi A., Fujinaka T., Yoshimine T., Tohyama M. and Hayakawa T. ( 1999 ) Kainic acid-induced seizure upregulates Na + / myo -inositol cotransporter mRNA in rat brain. Mol. Brain Res. 70, 179 – 186.en_US
dc.identifier.citedreferenceNovak J. E., Turner R. S., Agranoff B. W. and Fisher S. K. ( 1999 ) Differentiated human NT2-N neurons possess a high intracellular content of myo -inositol. J. Neurochem. 72, 1431 – 1440.en_US
dc.identifier.citedreferenceNovak J. E., Agranoff B. W. and Fisher S. K. ( 2000 ) Regulation of myo -inositol homeostasis in differentiated human NT2-N neurons. Neurochem. Res. 25, 561 – 566.en_US
dc.identifier.citedreferenceOhara-Imaizumi M., Fukuda M., Niinobe M., Misonou H., Ikeda K., Murakami T., Kawasaki M., Mikoshiba K. and Kumakura K. ( 1997 ) Distinct roles of C2A and C2B domains of synaptotagmin in the regulation of exocytosis in adrenal chromaffin cells. Proc. Natl Acad. Sci. USA 94, 287 – 291.en_US
dc.identifier.citedreferencePak Y., Huang L. C., Lilley K. J. and Larner J. ( 1992 ) In vivo conversion of [ 3 H]myoinositol to [ 3 H]chiroinositol in rat tissues. J. Biol. Chem. 267, 16904 – 16910.en_US
dc.identifier.citedreferencePalmano K. P., Whiting P. H. and Hawthorne J. N. ( 1977 ) Free and lipid myo-inositol in tissues from rats with acute and less severe streptozotocin-induced diabetes. Biochem. J. 167, 229 – 235.en_US
dc.identifier.citedreferenceParedes A., McManus M., Kwon H. M. and Strange K. ( 1992 ) Osmoregulation of Na + -inositol cotransporter activity and mRNA levels in brain glial cells. Am. J. Physiol. 263, C1282 – C1288.en_US
dc.identifier.citedreferencePatishi Y., Lubrich B., Berger M., Kofman O., van Calker D. and Belmaker R. H. ( 1996 ) Differential uptake of myo -inositol in vivo into rat brain areas. Eur. Neuropsychopharmacol. 6, 73 – 75.en_US
dc.identifier.citedreferencePorcellati F., Hlaing T., Togawa M., Stevens M. J., Larkin D. D., Hosaka Y., Glover T. W., Henry D. N., Greene D. A. and Killen P. D. ( 1998 ) Human Na + - myo -inositol cotransporter gene: alternate splicing generates diverse transcripts. Am. J. Physiol. 274, C1215 – C1225.en_US
dc.identifier.citedreferencePosternak T. ( 1965 ) The Cyclitols., pp. 127 – 144. Hermann, Paris.en_US
dc.identifier.citedreferenceReboulleau C. P. ( 1990 ) Inositol metabolism during neuroblastoma B50 cell differentiation: effects of differentiating agents on inositol uptake. J. Neurochem. 55, 641 – 650.en_US
dc.identifier.citedreferenceRim J. S., Atta M. G., Dahl S. C., Berry G. T., Handler J. S. and Kwon H. M. ( 1998 ) Transcription of the sodium/ myo -inositol cotransporter gene is regulated by multiple tonicity-responsive enhancers spread over 50 kilobase pairs in the 5′-flanking region. J. Biol. Chem. 273, 20615 – 20621.en_US
dc.identifier.citedreferenceRuhfus B. and Kinne R. K. H. ( 1996 ) Hypotonicity-activated efflux of taurine and myo-inositol in rat inner medullary collecting duct cells: evidence for a major common pathway. Kidney Blood Press Res. 19, 317 – 324.en_US
dc.identifier.citedreferenceRuhfus B., Tinel H. and Kinne R. K. H. ( 1996 ) Role of G-proteins in the regulation of organic osmolyte efflux from isolated rat renal inner medullary collecting duct cells. PflÜgers Arch. 433, 35 – 41.en_US
dc.identifier.citedreferenceSafrany S. T. and Shears S. B. ( 1998 ) Turnover of bis-diphosphoinositol tetrakisphosphate in a smooth muscle cell line is regulated by β 2 -adrenergic receptors through a cAMP-mediated, A-kinase-independent mechanism. EMBO J. 17, 1710 – 1716.en_US
dc.identifier.citedreferenceSafrany S. T., Caffrey J. J., Yang X., Bembenek M. E., Moyer M. B., Burkhart W. A. and Shears S. B. ( 1998 ) A novel context for the ‘MutT’ module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO J. 17, 6599 – 6607.en_US
dc.identifier.citedreferenceSafrany S. T., Caffrey J. J., Yang X. and Shears S. B. ( 1999 ) Diphosphoinositol polyphosphates: the final frontier for inositide research? Biol. Chem. 380, 945 – 951.en_US
dc.identifier.citedreferenceSaiardi A., Caffrey J. J., Snyder S. H. and Shears S. B. ( 2000 ) The inositol hexakisphosphate kinase family. Catalytic flexibility and function in yeast vacuole biogenesis. J. Biol. Chem. 275, 24686 – 24692.en_US
dc.identifier.citedreferenceSaiardi A., Nagata E., Luo H. R., Sawa A., Luo X., Snowman A. M. and Snyder S. H. ( 2001a ) Mammalian inositol polyphosphate multikinase synthesizes inositol 1,4,5-trisphosphate and an inositol pyrophosphate. Proc. Natl Acad. Sci. USA 98, 2306 – 2311.en_US
dc.identifier.citedreferenceSaiardi A., Nagata E., Luo H. R., Snowman A. M. and Snyder S. H. ( 2001b ) Identification and characterization of a novel inositol hexakisphosphate kinase. J. Biol. Chem. 276, 39179 – 39185.en_US
dc.identifier.citedreferenceSasakawa N., Sharif M. and Hanley M. R. ( 1995 ) Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate. Biochem. Pharmacol. 50, 137 – 146.en_US
dc.identifier.citedreferenceScherer J. ( 1850 ) Ueber eine neue, aus dem Muskelfleische gewonnene Zuckerart. Liebigs Ann. Chem. 73, 322 – 328.en_US
dc.identifier.citedreferenceScholz P., Bergmann G. and Mayr G. W. ( 1990 ) Nuclear magnetic resonance spectroscoy of myo -inositol phosphates, in Methods in Inositide Research ( Irvine R. F., ed.), pp. 65 – 82. Raven Press, New York.en_US
dc.identifier.citedreferenceSeaquist E. R. and Gruetter R. ( 1998 ) Identification of a high concentration of scyllo-inositol in the brain of a healthy human subject using 1H- and 13 C-NMR. Magn. Reson. Med. 39, 313 – 316.en_US
dc.identifier.citedreferenceSeiffert U. B. and Agranoff B. W. ( 1965 ) Isolation and separation of inositol phosphates from hydrolysates of rat tissues. Biochim. Biophys. Acta. 98, 574 – 581.en_US
dc.identifier.citedreferenceShears S. B. ( 2001 ) Assessing the omnipotence of inositol hexakisphosphate. Cell Signal 13, 151 – 158.en_US
dc.identifier.citedreferenceShears S. B., Ali N., Craxton A. and Bembenek M. E. ( 1995 ) Synthesis and metabolism of bis-diphosphoinositol tetrakisphosphate in vitro and in vivo. J. Biol. Chem. 270, 10489 – 10497.en_US
dc.identifier.citedreferenceSherman W. R., Stewart M. A., Kurien M. M. and Goodwin S. L. ( 1968a ) The measurement of myo -inositol, myo -inosose-2 and scyllo -inositol in mammalian tissues. Biochim. Biophys. Acta 158, 197 – 205.en_US
dc.identifier.citedreferenceSherman W. R., Stewart M. A., Simpson P. C. and Goodwin S. L. ( 1968b ) The identification of myo -inosose-2 and scyllo -inositol in mammalian tissues. Biochemistry 7, 819 – 824.en_US
dc.identifier.citedreferenceSherman W. R., Goodwin S. L. and Gunnell K. D. ( 1971 ) neo -Inositol in mammalian tissues. Identification, measurement, and enzymatic synthesis from mannose 6-phosphate. Biochemistry 10, 3491 – 3499.en_US
dc.identifier.citedreferenceSherman W. R., Packman P. M., Laird M. H. and Boshans R. L. ( 1977 ) Measurement of myo -inositol in single cells and defined areas of the nervous system by selected ion monitoring. Anal. Biochem. 78, 119 – 131.en_US
dc.identifier.citedreferenceSherman W. R., Gish B. G., Honchar M. P. and Munsell L. Y. ( 1986 ) Effects of lithium on phosphoinositide metabolism in vivo. Fed. Proc. 45, 2639 – 2646.en_US
dc.identifier.citedreferenceShetty H. U., Holloway H. W. and Rapoport S. I. ( 1995a ) Capillary gas chromatography combined with ion trap detection for quantitative profiling of polyols in cerebrospinal fluid and plasma. Anal. Biochem. 224, 279 – 285.en_US
dc.identifier.citedreferenceShetty H. U., Schapiro M. G., Holloway H. W. and Rapoport S. I. ( 1995b ) Polyol profiles in Down syndrome. myo × Inositol, specifically, is elevated in the cerebrospinal fluid. J. Clin. Invest. 95, 542 – 546.en_US
dc.identifier.citedreferenceShetty H. U., Siarey R. J., Galdzicki Z., Stoll J. and Rapoport S. I. ( 2000 ) Ts65Dn mouse, a Down syndrome model, exhibits elevated myo -inositol in selected brain regions and peripheral tissues. Neurochem. Res. 25, 431 – 435.en_US
dc.identifier.citedreferenceShimon H., Sobolev Y., Davidson M., Haroutunian V., Belmaker R. H. and Agam G. ( 1998 ) Inositol levels are decreased in postmortem brain of schizophrenic patients. Biol. Psychiatry 44, 428 – 432.en_US
dc.identifier.citedreferenceShonk T. and Ross B. D. ( 1995 ) Role of increased cerebral myo -inositol in the dementia of Down syndrome. Magn. Reson. Med. 33, 858 – 861.en_US
dc.identifier.citedreferenceSigal S. H., Yandrasitz J. R. and Berry G. T. ( 1993 ) Kinetic evidence for compartmentalization of myo -inositol in hepatocytes. Metabolism 42, 395 – 401.en_US
dc.identifier.citedreferenceSloane-Stanley G. H. ( 1953 ) Anaerobic reactions of phospholipins in brain suspensions. Biochem. J. 53, 613 – 619.en_US
dc.identifier.citedreferenceSong D., O'Regan M. H. and Phillis J. W. ( 1998 ) Protein kinase inhibitors attenuate cardiac swelling-induced amino acid release in the rat. J. Pharm. Pharmacol. 50, 1280 – 1286.en_US
dc.identifier.citedreferenceSpector R. ( 1978 ) The transport and metabolism of scyllo-inositol in the central nervous system. J. Neurochem. 31, 1113 – 1115.en_US
dc.identifier.citedreferenceStephens L., Radenberg T., Thiel U., Vogel G., Khoo K. H., Dell A. Jackson T. R. Hawkins P. T. and Mayr G. W. ( 1993 ) The detection, purification, structural characterization, and metabolism ofdiphosphoinositol pentakisphosphate (s) and bisdiphosphoinositol tetrakisphosphate (s). J. Biol. Chem. 268, 4009 – 4015.en_US
dc.identifier.citedreferenceStokes C. E. and Hawthorne J. N. ( 1987 ) Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains. J. Neurochem. 48, 1018 – 1021.en_US
dc.identifier.citedreferenceStokes C. E., Gillon K. R. and Hawthorne J. N. ( 1983 ) Free and total lipid myo-inositol concentrations decrease with age in human brain. Biochim. Biophys. Acta. 753, 136 – 138.en_US
dc.identifier.citedreferenceStrange K. ( 1992 ) Regulation of solute and water balance and cell Volume in the central nervous system. J. Am. Soc. Nephrol. 3, 12 – 27.en_US
dc.identifier.citedreferenceStrange K., Morrison R., Heilig C. W., DiPietro S. and Gullans S. R. ( 1991 ) Upregulation of inositol transport mediates inositol accumulation in hyperosmolar brain cells. Am. J. Physiol. 260, C784 – C790.en_US
dc.identifier.citedreferenceStrange K., Morrison R., Shrode L. and Putnam R. ( 1993 ) Mechanism and regulation of swelling-activated inositol efflux in brain glial cells. Am. J. Physiol. 265, C244 – C256.en_US
dc.identifier.citedreferenceStrange K., Emma F., Paredes A. and Morrison R. S. ( 1994 ) Osmoregulatory changes in myo -inositol content and Na + / myo -inositol cotransport in rat cortical astrocytes. Glia 12, 35 – 43.en_US
dc.identifier.citedreferenceStubbs E. B. and Agranoff B. W. ( 1993 ) Lithium enhances muscarinic receptor-stimulated CDP-diacylglycerol formation in inositol-depleted SK-N-SH neuroblastoma cells. J. Neurochem. 60, 1292 – 1299.en_US
dc.identifier.citedreferenceSun M. K., Wahlestedt C. and Reis D. J. ( 1992 ) Inositol hexakisphosphate excites rat medullary sympathoexcitatory neurons in vivo. Eur. J. Pharmacol. 215, 9 – 16.en_US
dc.identifier.citedreferenceSundkvist G., Dahlin L. B., Nilsson H., Eriksson K. F., Lindgarde F., Rosen I., Lattimer S. A., Sima A. A., Sullivan K. and Greene D. A. ( 2000 ) Sorbitol and myo -inositol levels and morphology of sural nerve in relation to peripheral nerve function and clinical neuropathy in men with diabetic, impaired, and normal glucose tolerance. Diabet. Med. 17, 259 – 268.en_US
dc.identifier.citedreferenceThurston J. H., Sherman W. R., Hauhart R. E. and Kloepper R. F. ( 1989 ) myo-inositol: a newly identified nonnitrogenous osmoregulatory molecule in mammalian brain. Pediatr. Res. 26, 482 – 485.en_US
dc.identifier.citedreferenceToker A. and Cantley L. C. ( 1997 ) Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387, 673 – 676.en_US
dc.identifier.citedreferenceUldry M., Ibberson M., Horisberger J. D., Chatton J. Y., Riederer B. M. and Thorens B. ( 2001 ) Identification of a mammalian H ( + )- myo -inositol symporter expressed predominantly in the brain. EMBO J. 20, 4467 – 4477.en_US
dc.identifier.citedreferenceVallejo M., Jackson T., Lightman S. and Hanley M. R. ( 1987 ) Occurrence and extracellular actions of inositol pentakis- and hexakisphosphate in mammalian brain. Nature 330, 656 – 658.en_US
dc.identifier.citedreferenceVanhaesebroeck B., Leevers S. J., Ahmadi K., Timms J., Katso R., Driscoll P. C., Woscholski R., Parker P. J. and Waterfield M. D. ( 2001 ) Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535 – 602.en_US
dc.identifier.citedreferenceVenkatachalam M. A. and Buja M. ( 1994 ) Cellular injury and cellular death, in Robbins Pathologic Basis of Disease, 5th edn. ( Cotran R. S., Kumar V., Robbins S. L. and Schoen F. J., eds), pp. 1 – 34. W.B. Saunders Company, Philadelphia.en_US
dc.identifier.citedreferenceVideen J. S., Michaelis T., Pinto P. and Ross B. D. ( 1995 ) Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study. J. Clin. Invest. 95, 788 – 793.en_US
dc.identifier.citedreferenceVoglmaier S. M., Keen J. H., Murphy J. E., Ferris C. D., Prestwich G. D., Snyder S. H. and Theibert A. B. ( 1992 ) Inositol hexakisphosphate receptor identified as the clathrin assembly protein AP-2. Biochem. Biophys. Res. Commun. 187, 158 – 163.en_US
dc.identifier.citedreferenceVoglmaier S. M., Bembenek M. E., Kaplin A. I., Dorman G., Olszewski J. D., Prestwich G. D. and Snyder S. H. ( 1996 ) Purified inositol hexakisphosphate kinase is an ATP synthase: diphosphoinositol pentakisphosphate as a high-energy phosphate donor. Proc. Natl Acad. Sci. USA 93, 4305 – 4310.en_US
dc.identifier.citedreferenceWiese T. J., Dunlap J. A., Conner C. E., Grzybowski J. A., Lowe W. L. and Yorek M. A. ( 1996 ) Osmotic regulation of Na- myo -inositol cotransporter mRNA level and activity in endothelial and neural cells. Am. J. Physiol. 270, C990 – C997.en_US
dc.identifier.citedreferenceWiesinger H. ( 1991 ) myo -inositol transport in mouse astroglia-rich primary cultures. J. Neurochem. 56, 1698 – 1704.en_US
dc.identifier.citedreferenceWolfson M., Bersudsky Y., Hertz E., Berkin V., Zinger E. and Hertz L. ( 2000 ) A model of inositol compartmentation in astrocytes based upon efflux kinetics and slow inositol depletion after uptake inhibition. Neurochem. Res. 5, 977 – 982.en_US
dc.identifier.citedreferenceWong Y. H., Kalmbach S. J., Hartman B. K. and Sherman W. R. ( 1987 ) Immunohistochemical staining and enzyme activity measurements show myo-inositol-1-phosphate synthase to be localized in the vasculature of brain. J. Neurochem. 48, 1434 – 1442.en_US
dc.identifier.citedreferenceYamaguchi Y., Ikenaka K., Niinobe M., Yamada H. and Mikoshiba K. ( 1996 ) Myelin proteolipid protein (PLP), but not DM-20, is an inositol hexakisphosphate-binding protein. J. Biol. Chem. 271, 27838 – 27846.en_US
dc.identifier.citedreferenceYamashita T., Shimada S., Yamauchi A., Guo W., Kohmura E., Hayakawa T. and Tohyama M. ( 1997 ) Induction of Na + / myo -inositol co-transporter mRNA after rat cryogenic injury. Brain Res. Mol. Brain Res. 46, 236 – 242.en_US
dc.identifier.citedreferenceYang S. N. Yu J., Mayr G. W., Hofmann F., Larsson O. and Berggren P. O. ( 2001 ) Inositol hexakisphosphate increases 1-type Ca 2+ channel activity by stimulation of adenylyl cyclase. FASEB J. 15, 1753 – 1763.en_US
dc.identifier.citedreferenceYe W., Ali N., Bembenek M. E., Shears S. B. and Lafer E. M. ( 1995 ) Inhibition of clathrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein. J. Biol. Chem. 270, 1564 – 1568.en_US
dc.identifier.citedreferenceYorek M. A., Dunlap J. A. and Ginsberg B. H. ( 1986 ) Myoinositol uptake by four cultured mammalian cell lines. Arch. Biochem. Biophys. 246, 801 – 807.en_US
dc.identifier.citedreferenceYorek M. A., Wiese T. J., Davidson E. P., Dunlap J. A., Stefani M. R., Conner C. E., Lattimer S. A., Kamijo M., Greene D. A. and Sima A. A. ( 1993 ) Reduced motor nerve conduction velocity and Na (+)-K (+)-ATPase activity in rats maintained on 1-fucose diet. Reversal by myo-inositol supplementation. Diabetes 42, 1401 – 1406.en_US
dc.identifier.citedreferenceYorek M. A., Dunlap J. A., Manzo-Fontes A., Bianchi R., Berry G. T. and Eichberg J. ( 1999 ) Abnormal myo -inositol and phospholipid metabolism in cultured fibroblasts from patients with ataxia telangiectasia. Biochim. Biophys. Acta. 1437, 287 – 300.en_US
dc.identifier.citedreferenceYork J. D., Odom A. R., Murphy R., Ives E. B. and Wente S. R. ( 1999 ) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285, 96 – 100.en_US
dc.identifier.citedreferenceYoung L. ( 1934 ) The determination of inositol in animal tissues. Biochem. J. 34, 1435 – 1443.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.