Show simple item record

Functional characterization of mouse α4β2 nicotinic acetylcholine receptors stably expressed in HEK293T cells

dc.contributor.authorKaradsheh, Mark S.en_US
dc.contributor.authorShah, M. Salmanen_US
dc.contributor.authorTang, Xinen_US
dc.contributor.authorMacdonald, Robert L.en_US
dc.contributor.authorStitzel, Jerry A.en_US
dc.date.accessioned2010-04-01T14:46:55Z
dc.date.available2010-04-01T14:46:55Z
dc.date.issued2004-12en_US
dc.identifier.citationKaradsheh, Mark S.; Shah, M. Salman; Tang, Xin; Macdonald, Robert L.; Stitzel, Jerry A. (2004). "Functional characterization of mouse α4β2 nicotinic acetylcholine receptors stably expressed in HEK293T cells." Journal of Neurochemistry 91(5): 1138-1150. <http://hdl.handle.net/2027.42/65230>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65230
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15569257&dopt=citationen_US
dc.description.abstractMouse α4β2 nicotinic acetylcholine receptors (nAchRs) were stably expressed in HEK293T cells. The function of this stable cell line, termed mmα4β2, was assessed using an aequorin-based luminescence method that measures agonist-evoked changes in intracellular calcium. Agonist-elicited changes in intracellular calcium were due primarily to direct entry of calcium through the α4β2 channel, although release of calcium from intracellular stores contributed ˜ 28% of the agonist-evoked response. Agonist pharmacologies were very similar between the mmα4β2 cells and most cell lines that stably express human α4β2 nAchRs. Based on agonist profiles and sensitivity to the antagonist dihydro-β-erythroidine (DHβE), the predominant α4β2 nAchR expressed in the mmα4β2 cells exhibits a pharmacology that most resembles the DHβE-sensitive component of 86 Rb + efflux from mouse brain synaptosomes. However, when evaluated with the aequorin assay, the mmα4β2 nAchR was found to be atypically sensitive to blockade by the presumed α7-selective antagonist methyllycaconitine (MLA), exhibiting an IC 50 value of 31 ± 0.1 nm. Similar IC 50 values have been reported for the MLA inhibition of nicotine-stimulated dopamine release, a response that is mediated by β2-subunit-containing nAchRs and not α7-subunit-containing nAchRs. Consequently, at low nanomolar concentrations, MLA may not be as selective for α7-containing nAchRs as previously thought.en_US
dc.format.extent425238 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2004 International Society for Neurochemistryen_US
dc.subject.otherAequorinen_US
dc.subject.otherCalciumen_US
dc.subject.otherHeterologous Expressionen_US
dc.subject.otherLuminescenceen_US
dc.subject.otherMethyllycaconitineen_US
dc.titleFunctional characterization of mouse α4β2 nicotinic acetylcholine receptors stably expressed in HEK293T cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother† Department of Neurology, Vanderbilt University Medical School, Nashville, Tennessee, USAen_US
dc.contributor.affiliationother† Department of Integrative Physiology and Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USAen_US
dc.identifier.pmid15569257en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65230/1/j.1471-4159.2004.02801.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2004.02801.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAlkondon M., Pereira E. F., Wonnacott S. and Albuquerque E. X. ( 1992 ) Blockade of nicotinic currents in hippocampal neurons defines methyllycaconitine as a potent and specific receptor antagonist. Mol. Pharmacol. 41, 802 – 808.en_US
dc.identifier.citedreferenceAlkondon M., Pereira E. F. and Albuquerque E. X. ( 1996 ) Mapping the location of functional nicotinic and gamma-aminobutyric acid A receptors on hippocampal neurons. J. Pharmacol. Exp. Ther. 279, 1491 – 1506.en_US
dc.identifier.citedreferenceBenwell M. E., Balfour D. J. and Anderson J. M. ( 1988 ) Evidence that tobacco smoking increases the density of (–)-[ 3 H]nicotine binding sites in human brain. J. Neurochem. 50, 1243 – 1247.en_US
dc.identifier.citedreferenceBerridge M. J. ( 1998 ) Neuronal calcium signaling. Neuron 21, 13 – 26.en_US
dc.identifier.citedreferenceBertrand D., Galzi J. L., Devillers-Thiery A., Bertrand S. and Changeux J. P. ( 1993 ) Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor. Proc. Natl Acad. Sci. USA 90, 6971 – 6975.en_US
dc.identifier.citedreferenceBreese C. R., Marks M. J., Logel J., Adams C. E., Sullivan B., Collins A. C. and Leonard S. ( 1997 ) Effect of smoking history on [ 3 H]nicotine binding in human postmortem brain. J. Pharmacol. Exp. Ther. 282, 7 – 13.en_US
dc.identifier.citedreferenceBrini M., Marsault R., Bastianutto C., Alvarez J., Pozzan T. and Rizzuto R. ( 1995 ) Transfected aequorin in the measurement of cytosolic Ca 2+ concentration ([Ca 2+ ]c). A critical evaluation. J. Biol. Chem. 270, 9896 – 9903.en_US
dc.identifier.citedreferenceBuisson B. and Bertrand D. ( 2001 ) Chronic exposure to nicotine upregulates the human (alpha)4(beta)2 nicotinic acetylcholine receptor function. J. Neurosci. 21, 1819 – 1829.en_US
dc.identifier.citedreferenceBuisson B., Gopalakrishnan M., Arneric S. P., Sullivan J. P. and Bertrand D. ( 1996 ) Human alpha4beta2 neuronal nicotinic acetylcholine receptor in HEK 293 cells: A patch-clamp study. J. Neurosci. 16, 7880 – 7891.en_US
dc.identifier.citedreferenceButt C. M., King N. M., Stitzel J. A. and Collins A. C. ( 2004 ) Interaction of the nicotinic cholinergic system with ethanol withdrawal. J. Pharmacol. Exp. Ther. 308, 591 – 599.en_US
dc.identifier.citedreferenceCastro N. G. and Albuquerque E. X. ( 1995 ) Alpha-bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophys. J. 68, 516 – 524.en_US
dc.identifier.citedreferenceChamptiaux N., Han Z. Y., Bessis A., Rossi F. M., Zoli M., Marubio L., McIntosh J. M. and Changeux J. P. ( 2002 ) Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice. J. Neurosci. 22, 1208 – 1217.en_US
dc.identifier.citedreferenceChavez-Noriega L. E., Gillespie A., Stauderman K. A. et al. ( 2000 ) Characterization of the recombinant human neuronal nicotinic acetylcholine receptors alpha3beta2 and alpha4beta2 stably expressed in HEK293 cells. Neuropharmacology 39, 2543 – 2560.en_US
dc.identifier.citedreferenceClarke P. B. and Reuben M. ( 1996 ) Release of [ 3 H]-noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [ 3 H]-dopamine release. Br. J. Pharmacol. 117, 595 – 606.en_US
dc.identifier.citedreferenceDajas-Bailador F. A., Mogg A. J. and Wonnacott S. ( 2002 ) Intracellular Ca 2+ signals evoked by stimulation of nicotinic acetylcholine receptors in SH-SY5Y cells: contribution of voltage-operated Ca 2+ channels and Ca 2+ stores. J. Neurochem. 81, 606 – 614.en_US
dc.identifier.citedreferenceDobelis P., Marks M. J., Whiteaker P., Balogh S. A., Collins A. C. and Stitzel J. A. ( 2002 ) A polymorphism in the mouse neuronal alpha4 nicotinic receptor subunit results in an alteration in receptor function. Mol. Pharmacol. 62, 334 – 342.en_US
dc.identifier.citedreferenceEaton J. B., Peng J. H., Schroeder K. M., George A. A., Fryer J. D., Krishnan C., Buhlman L., Kuo Y. P., Steinlein O. and Lukas R. J. ( 2003 ) Characterization of human alpha4beta2-nicotinic acetylcholine receptors stably and heterologously expressed in native nicotinic receptor-null SH-EP1 human epithelial cells. Mol. Pharmacol. 64, 1283 – 1294.en_US
dc.identifier.citedreferenceEpping-Jordan M. P., Picciotto M. R., Changeux J. P. and Pich E. M. ( 1999 ) Assessment of nicotinic acetylcholine receptor subunit contributions to nicotine self-administration in mutant mice. Psychopharmacology (Berl. ) 147, 25 – 26.en_US
dc.identifier.citedreferenceFitch R. W., Xiao Y., Kellar K. J. and Daly J. W. ( 2003 ) Membrane potential fluorescence: a rapid and highly sensitive assay for nicotinic receptor channel function. Proc. Natl Acad. Sci. USA 100, 4909 – 4914.en_US
dc.identifier.citedreferenceFlynn D. D. and Mash D. C. ( 1986 ) Characterization of l-[ 3 H]nicotine binding in human cerebral cortex: comparison between Alzheimer's disease and the normal. J. Neurochem. 47, 1948 – 1954.en_US
dc.identifier.citedreferenceGafni J., Munsch J. A., Lam T. H., Catlin M. C., Costa L. G., Molinski T. F. and Pessah I. N. ( 1997 ) Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron 19, 723 – 733.en_US
dc.identifier.citedreferenceGopalakrishnan M., Monteggia L. M., Anderson D. J., Molinari E. J., Piattoni-Kaplan M., Donnelly-Roberts D., Arneric S. P. and Sullivan J. P. ( 1996 ) Stable expression, pharmacologic properties and regulation of the human neuronal nicotinic acetylcholine alpha4beta2 receptor. J. Pharmacol. Exp. Ther. 276, 289 – 297.en_US
dc.identifier.citedreferenceGrady S., Marks M. J., Wonnacott S. and Collins A. C. ( 1992 ) Characterization of nicotinic receptor-mediated [ 3 H]dopamine release from synaptosomes prepared from mouse striatum. J. Neurochem. 59, 848 – 856.en_US
dc.identifier.citedreferenceGrady S. R., Grun E. U., Marks M. J. and Collins A. C. ( 1997 ) Pharmacological comparison of transient and persistent [ 3 H]dopamine release from mouse striatal synaptosomes and response to chronic l-nicotine treatment. J. Pharmacol. Exp. Ther. 282, 32 – 43.en_US
dc.identifier.citedreferenceGray R., Rajan A. S., Radcliffe K. A., Yakehiro M. and Dani J. A. ( 1996 ) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383, 713 – 716.en_US
dc.identifier.citedreferenceGueorguiev V. D., Zeman R. J., Meyer E. M. and Sabban E. L. ( 2000 ) Involvement of alpha7 nicotinic acetylcholine receptors in activation of tyrosine hydroxylase and dopamine beta-hydroxylase gene expression in PC12 cells. J. Neurochem. 75, 1997 – 2005.en_US
dc.identifier.citedreferenceKim H., Flanagin B. A., Qin C., Macdonald R. L. and Stitzel J. A. ( 2003 ) The mouse Chrna4 A529T polymorphism alters the ratio of high to low affinity alpha4beta2 nAChRs. Neuropharmacology 45, 345 – 354.en_US
dc.identifier.citedreferenceKlink R., de Kerchove D. A., Zoli M. and Changeux J. P. ( 2001 ) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J. Neurosci. 21, 1452 – 1463.en_US
dc.identifier.citedreferenceLin L., Jeanclos E. M., Treuil M., Braunewell K. H., Gundelfinger E. D. and Anand R. ( 2002 ) The calcium sensor protein visinin-like protein-1 modulates the surface expression and agonist sensitivity of the alpha4beta2 nicotinic acetylcholine receptor. J. Biol. Chem. 277, 41 872 – 41 878.en_US
dc.identifier.citedreferenceLindstrom J. M. ( 2003 ) Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology. Ann. NY Acad. Sci. 998, 41 – 52.en_US
dc.identifier.citedreferenceLowry O. H., Rosebrough N. H., Farr A. C. and Randall R. T. ( 1951 ) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265 – 275.en_US
dc.identifier.citedreferenceLu Y., Grady S., Marks M. J., Picciotto M., Changeux J. P. and Collins A. C. ( 1998 ) Pharmacological characterization of nicotinic receptor-stimulated GABA release from mouse brain synaptosomes. J. Pharmacol. Exp. Ther. 287, 648 – 657.en_US
dc.identifier.citedreferenceMarks M. J., Burch J. B. and Collins A. C. ( 1983 ) Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J. Pharmacol. Exp. Ther. 226, 817 – 825.en_US
dc.identifier.citedreferenceMarks M. J., Smith K. W. and Collins A. C. ( 1998 ) Differential agonist inhibition identifies multiple epibatidine binding sites in mouse brain. J. Pharmacol. Exp. Ther. 285, 377 – 386.en_US
dc.identifier.citedreferenceMarks M. J., Whiteaker P., Calcaterra J., Stitzel J. A., Bullock A. E., Grady S. R., Picciotto M. R., Changeux J. P. and Collins A. C. ( 1999 ) Two pharmacologically distinct components of nicotinic receptor-mediated rubidium efflux in mouse brain require the beta2 subunit. J. Pharmacol. Exp. Ther. 289, 1090 – 1103.en_US
dc.identifier.citedreferenceMichelmore S., Croskery K., Nozulak J., Hoyer D., Longato R., Weber A., Bouhelal R. and Feuerbach D. ( 2002 ) Study of the calcium dynamics of the human alpha4beta2, alpha3beta4 and alpha1beta1gammadelta nicotinic acetylcholine receptors. Naunyn Schmiedebergs Arch. Pharmacol. 366, 235 – 245.en_US
dc.identifier.citedreferenceMogg A. J., Whiteaker P., McIntosh J. M., Marks M., Collins A. C. and Wonnacott S. ( 2002 ) Methyllycaconitine is a potent antagonist of alpha-conotoxin-MII-sensitive presynaptic nicotinic acetylcholine receptors in rat striatum. J. Pharmacol. Exp. Ther. 302, 197 – 204.en_US
dc.identifier.citedreferenceNayak S. V., Dougherty J. J., McIntosh J. M. and Nichols R. A. ( 2001 ) Ca(2+) changes induced by different presynaptic nicotinic receptors in separate populations of individual striatal nerve terminals. J. Neurochem. 76, 1860 – 1870.en_US
dc.identifier.citedreferenceNelson M. E., Kuryatov A., Choi C. H., Zhou Y. and Lindstrom J. ( 2003 ) Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors. Mol. Pharmacol. 63, 332 – 341.en_US
dc.identifier.citedreferenceNordberg A. and Winblad B. ( 1986 ) Reduced number of [ 3 H]nicotine and [ 3 H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci. Lett. 72, 115 – 119.en_US
dc.identifier.citedreferenceOwens J. C., Balogh S. A., McClure-Begley T. D., Butt C. M., Labarca C., Lester H. A., Picciotto M. R., Wehner J. M. and Collins A. C. ( 2003 ) Alpha4beta2* nicotinic acetylcholine receptors modulate the effects of ethanol and nicotine on the acoustic startle response. Alcohol Clin. Exp. Res. 27, 1867 – 1875.en_US
dc.identifier.citedreferenceOzaki H., Hori M., Kim Y. S., Kwon S. C., Ahn D. S., Nakazawa H., Kobayashi M. and Karaki H. ( 2002 ) Inhibitory mechanism of xestospongin-C on contraction and ion channels in the intestinal smooth muscle. Br. J. Pharmacol. 137, 1207 – 1212.en_US
dc.identifier.citedreferencePacheco M. A., Pastoor T. E., Lukas R. J. and Wecker L. ( 2001 ) Characterization of human alpha4beta2 neuronal nicotinic receptors stably expressed in SH-EP1 cells. Neurochem. Res. 26, 683 – 693.en_US
dc.identifier.citedreferencePalma E., Bertrand S., Binzoni T. and Bertrand D. ( 1996 ) Neuronal nicotinic alpha 7 receptor expressed in Xenopus oocytes presents five putative binding sites for methyllycaconitine. J. Physiol. 491, 151 – 161.en_US
dc.identifier.citedreferencePicciotto M. R., Zoli M., Lena C., Bessis A., Lallemand Y., LeNovere N., Vincent P., Pich E. M., Brulet P. and Changeux J. P. ( 1995 ) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374, 65 – 67.en_US
dc.identifier.citedreferenceRagozzino D., Barabino B., Fucile S. and Eusebi F. ( 1998 ) Ca 2+ permeability of mouse and chick nicotinic acetylcholine receptors expressed in transiently transfected human cells. J. Physiol. 507, 749 – 757.en_US
dc.identifier.citedreferenceRapier C., Lunt G. G. and Wonnacott S. ( 1990 ) Nicotinic modulation of [ 3 H]dopamine release from striatal synaptosomes: pharmacological characterisation. J. Neurochem. 54, 937 – 945.en_US
dc.identifier.citedreferenceRole L. W. and Berg D. K. ( 1996 ) Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16, 1077 – 1085.en_US
dc.identifier.citedreferenceRyan R. E., Ross S. A., Drago J. and Loiacono R. E. ( 2001 ) Dose-related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in alpha4 nicotinic receptor subunit knockout mice. Br. J. Pharmacol. 132, 1650 – 1656.en_US
dc.identifier.citedreferenceSalminen O. S., Murphy K. L., McIntosh J. M., Drago J., Marks M. J., Collins A. C. and Grady S. R. ( 2004 ) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol. Pharmacol. 65, 1526 – 1535.en_US
dc.identifier.citedreferenceSeguela P., Wadiche J., Dineley-Miller K., Dani J. A. and Patrick J. W. ( 1993 ) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J. Neurosci. 13, 596 – 604.en_US
dc.identifier.citedreferenceShafaee N., Houng M., Truong A., Viseshakul N., Figl A., Sandhu S., Forsayeth J. R., Dwoskin L. P., Crooks P. A. and Cohen B. N. ( 1999 ) Pharmacological similarities between native brain and heterologously expressed alpha4beta2 nicotinic receptors. Br. J. Pharmacol. 128, 1291 – 1299.en_US
dc.identifier.citedreferenceSharma G. and Vijayaraghavan S. ( 2001 ) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc. Natl Acad. Sci. USA 98, 4148 – 4153.en_US
dc.identifier.citedreferenceShoop R. D., Chang K. T., Ellisman M. H. and Berg D. K. ( 2001 ) Synaptically driven calcium transients via nicotinic receptors on somatic spines. J. Neurosci. 21, 771 – 781.en_US
dc.identifier.citedreferenceSteinlein O. K. ( 2004 ) Nicotinic receptor mutations in human epilepsy. Prog. Brain Res. 145, 275 – 285.en_US
dc.identifier.citedreferenceStitzel J. A., Jimenez M., Marks M. J., Tritto T. and Collins A. C. ( 2000 ) Potential role of the alpha4 and alpha6 nicotinic receptor subunits in regulating nicotine-induced seizures. J. Pharmacol. Exp. Ther. 293, 67 – 74.en_US
dc.identifier.citedreferenceStitzel J. A., Dobelis P., Jimenez M. and Collins A. C. ( 2001 ) Long sleep and short sleep mice differ in nicotine-stimulated 86 Rb + efflux and alpha4 nicotinic receptor subunit cDNA sequence. Pharmacogenetics 11, 331 – 339.en_US
dc.identifier.citedreferenceTritto T., Stitzel J. A., Marks M. J., Romm E. and Collins A. C. ( 2002 ) Variability in response to nicotine in the LSxSS RI strains: potential role of polymorphisms in alpha4 and alpha6 nicotinic receptor genes. Pharmacogenetics 12, 197 – 208.en_US
dc.identifier.citedreferenceTruong A., Xing X., Forsayeth J. R., Dwoskin L. P., Crooks P. A. and Cohen B. N. ( 2001 ) Pharmacological differences between immunoisolated native brain and heterologously expressed rat alpha4beta2 nicotinic receptors. Brain Res. Mol. Brain Res. 96, 68 – 76.en_US
dc.identifier.citedreferenceTsuneki H., Klink R., Lena C., Korn H. and Changeux J. P. ( 2000 ) Calcium mobilization elicited by two types of nicotinic acetylcholine receptors in mouse substantia nigra pars compacta. Eur. J. Neurosci. 12, 2475 – 2485.en_US
dc.identifier.citedreferenceUngrin M. D., Singh L. M., Stocco R., Sas D. E. and Abramovitz M. ( 1999 ) An automated aequorin luminescence-based functional calcium assay for G-protein-coupled receptors. Anal. Biochem. 272, 34 – 42.en_US
dc.identifier.citedreferenceVernino S., Amador M., Luetje C. W., Patrick J. and Dani J. A. ( 1992 ) Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8, 127 – 134.en_US
dc.identifier.citedreferenceVernon W. I. and Printen J. A. ( 2002 ) Assay for intracellular calcium using a codon-optimized aequorin. Biotechniques 33, 730 – 734.en_US
dc.identifier.citedreferenceVirginio C., Giacometti A., Aldegher L., Rimland J. M. and Terstappen G. C. ( 2002 ) Pharmacological properties of rat alpha 7 nicotinic receptors expressed in native and recombinant cell systems. Eur. J. Pharmacol. 445, 153 – 161.en_US
dc.identifier.citedreferenceWhitehouse P. J., Martino A. M., Antuono P. G., Lowenstein P. R., Coyle J. T., Price D. L. and Kellar K. J. ( 1986 ) Nicotinic acetylcholine binding sites in Alzheimer's disease. Brain Res. 371, 146 – 151.en_US
dc.identifier.citedreferenceWhiting P. J. and Lindstrom J. M. ( 1988 ) Characterization of bovine and human neuronal nicotinic acetylcholine receptors using monoclonal antibodies. J. Neurosci. 8, 3395 – 3404.en_US
dc.identifier.citedreferenceXiao Y., Meyer E. L., Thompson J. M., Surin A., Wroblewski J. and Kellar K. J. ( 1998 ) Rat alpha3/beta4 subtype of neuronal nicotinic acetylcholine receptor stably expressed in a transfected cell line: pharmacology of ligand binding and function. Mol. Pharmacol. 54, 322 – 333.en_US
dc.identifier.citedreferenceZanello L. P., Aztiria E., Antollini S. and Barrantes F. J. ( 1996 ) Nicotinic acetylcholine receptor channels are influenced by the physical state of their membrane environment. Biophys. J. 70, 2155 – 2164.en_US
dc.identifier.citedreferenceZhou Y., Nelson M. E., Kuryatov A., Choi C., Cooper J. and Lindstrom J. ( 2003 ) Human alpha4beta2 acetylcholine receptors formed from linked subunits. J. Neurosci. 23, 9004 – 9015.en_US
dc.identifier.citedreferenceZhu P. J. and Chiappinelli V. A. ( 1999 ) Nicotine modulates evoked GABAergic transmission in the brain. J. Neurophysiol. 82, 3041 – 3045.en_US
dc.identifier.citedreferenceZoli M., Moretti M., Zanardi A., McIntosh J. M., Clementi F. and Gotti C. ( 2002 ) Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J. Neurosci. 22, 8785 – 8789.en_US
dc.identifier.citedreferenceZwart R. and Vijverberg H. P. ( 1998 ) Four pharmacologically distinct subtypes of alpha4beta2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Mol. Pharmacol. 54, 1124 – 1131.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.