Show simple item record

Characterization of Glutamate Uptake into Synaptic Vesicles

dc.contributor.authorNaito, Shigetakaen_US
dc.contributor.authorUeda, Tetsufumien_US
dc.date.accessioned2010-04-01T14:47:29Z
dc.date.available2010-04-01T14:47:29Z
dc.date.issued1985-01en_US
dc.identifier.citationNaito, Shigetaka; Ueda, Tetsufumi (1985). "Characterization of Glutamate Uptake into Synaptic Vesicles." Journal of Neurochemistry 44(1): 99-109. <http://hdl.handle.net/2027.42/65240>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65240
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=2856886&dopt=citationen_US
dc.description.abstractRecent evidence indicates that L-glutamate is taken up into synaptic vesicles in an ATP-dependent manner, supporting the notion that synaptic vesicles may be involved in glutamate synaptic transmission. In this study, we further characterized the ATP-dependent vesicular uptake of glutamate. Evidence is provided that a Mg-ATPase, not Ca-ATPase, is responsible for the ATP hydrolysis coupled to the glutamate uptake. The ATP-dependent glutamate uptake was inhibited by agents known to dissipate the electrochemical proton gradient across the membrane of chromaffin granules. Hence, it is suggested that the vesicular uptake of glutamate is driven by electrochemical proton gradients generated by the Mg-ATPase. Of particular interest is the finding that the ATP-dependent glutamate uptake is markedly stimulated by chloride over a physiologically relevant, millimolar concentration range, suggesting an important role of intranerve terminal chloride in the accumulation of glutamate in synaptic vesicles. The vesicular glutamate translocator is highly specific for L-glutamate, and failed to interact with aspartate, its related agents, and most of the glutamate analogs tested. It is proposed that this vesicular translocator plays a crucial role in determining the fate of glutamate as a neurotransmitter.en_US
dc.format.extent1197114 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1985 International Society for Neurochemistryen_US
dc.subject.otherGlutamateen_US
dc.subject.otherSynaptic Vesicleen_US
dc.subject.otherUptakeen_US
dc.subject.otherMg-ATPaseen_US
dc.subject.otherExcitatory Neurotransmitteren_US
dc.titleCharacterization of Glutamate Uptake into Synaptic Vesiclesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Mental Health Research Institute, The University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationumDepartments of Pharmacology and Psychiatry, The University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid2856886en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65240/1/j.1471-4159.1985.tb07118.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1985.tb07118.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBashford C. L., Radda G. K., and Ritchie G. A. ( 1975 ) Energy-linked activities of the chromaffin granule membrane. FEBS Lett. 50, 21 – 24.en_US
dc.identifier.citedreferenceBloom F. E., Ueda T., Battenberg E., and Greengard P. ( 1979 ) Immunocytochemical localization, in synapses, of Protein I, an endogenous substrate for protein kinases in mammalian brain. Proc. Natl. Acad. Sci. USA 76, 5982 – 5986.en_US
dc.identifier.citedreferenceCarty S. E., Johnson R. G., and Scarpa A. ( 1981 ) Serotonin transport in isolated platelet granules. J. Biol. Chem. 256, 11244 – 11250.en_US
dc.identifier.citedreferenceChristensen H. N. and Makowske M. ( 1983 ) Recognition chemistry of anionic amino acids for hepatocyte transport and for neurotransmittory action compared. Life Sci. 33, 2255 – 2267.en_US
dc.identifier.citedreferenceCotman C. W., Foster A. C., and Lanthorn T. H. ( 1981 ) An overview of glutamate as a neurotransmitter, in Glutamate as a Neurotransmitter ( Di Chiara G. and Gessa G. L., eds ), pp. 1 – 27. Raven Press, New York.en_US
dc.identifier.citedreferenceCurtis D. R. and Johnston G. A. R. ( 1974 ) Amino acid transmitters in the mammalian CNS. Ergeb. Physiol. 69, 97 – 188.en_US
dc.identifier.citedreferenceDe Belleroche J. S. and Bradford H. F. ( 1972 ) Metabolism of beds of mammalian cortical synaptosomes: response to depolarizing influences. J. Neurochem. 19, 585 – 602.en_US
dc.identifier.citedreferenceDe Belleroche J. S. and Bradford H. F. ( 1973 ) Amino acids in synaptic vesicles from mammalian cerebral cortex: a reappraisal. J. Neurochem. 21, 441 – 451.en_US
dc.identifier.citedreferenceDe Belleroche J. S. and Bradford H. F. ( 1977 ) On the site of origin of transmitter amino acids released by depolarization of nerve terminals in vitro. J. Neurochem. 29, 335 – 343.en_US
dc.identifier.citedreferenceDe Camilli P., Harris S. M. Jr., Huttner W. B., and Greengard P. ( 1983 ) Synapsin (Protein I), a nerve terminal-specific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. J. Cell Biol. 96, 1355 – 1373.en_US
dc.identifier.citedreferenceFagg G. E., Foster A. C., Mena E. E., and Cotman C. W. ( 1982 ) Chloride and calcium ions reveal a pharmacologically distinct population of L-glutamate binding sites in synaptic membranes: correspondence between biochemical and electrophysiological data. J. Neurosci. 2, 958 – 965.en_US
dc.identifier.citedreferenceFonnum F. ( 1984 ) Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 42, 1 – 11.en_US
dc.identifier.citedreferenceGreengard P. ( 1981 ) Intracellular signals in the brain. Harvey Lect. 75, 277 – 331.en_US
dc.identifier.citedreferenceHasselbach W. and Taugner G. ( 1970 ) The effect of a crossbridging thiol reagent on the catecholamine fluxes of adrenal medulla vesicles. Biochem. J. 119, 265 – 271.en_US
dc.identifier.citedreferenceHolz R. W. ( 1978 ) Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential. Proc. Natl. Acad. Sci. USA 75, 5190 – 5194.en_US
dc.identifier.citedreferenceJohnson R. G. and Scarpa A. ( 1979 ) Protonmotive force and catecholamine transport in isolated chromaffin granules. J. Biol. Chem. 254, 3750 – 3760.en_US
dc.identifier.citedreferenceJohnson R. G., Carlson N. J., and Scarpa A. ( 1978 ) ΔpH and catecholamine distribution in isolated chromaffin granules. J. Biol. Chem. 253, 1512 – 1521.en_US
dc.identifier.citedreferenceJohnson R. G., Pfister D., Carty S. E., and Scarpa A. ( 1979 ) Biological amine transport in chromaffin ghosts. J. Biol. Chem. 254, 10963 – 10972.en_US
dc.identifier.citedreferenceKennedy M. B., McGuinness T., and Greengard P. ( 1983 ) A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates Synapsin I: partial purification and characterization. J. Neurosci. 3, 818 – 831.en_US
dc.identifier.citedreferenceKoerner J. F. and Cotman C. W. ( 1981 ) Micromolar L-2-aminophosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res. 216, 192 – 198.en_US
dc.identifier.citedreferenceKontro P., Marnela K.-M., and Oja S. S. ( 1980 ) Free amino acids in the synaptosome and synaptic vesicle fractions of different bovine brain areas. Brain Res. 184, 129 – 141.en_US
dc.identifier.citedreferenceKrnjevi°C K. ( 1974 ) Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54, 418 – 540.en_US
dc.identifier.citedreferenceKrogsgaard-Larsen P. and HonorÉ T. ( 1983 ) Glutamate receptors and new glutamate agonists. TIPS 4, 31 – 33.en_US
dc.identifier.citedreferenceLogan W. J. and Snyder S. H. ( 1972 ) High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues. Brain Res. 42, 413 – 431.en_US
dc.identifier.citedreferenceLowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. ( 1951 ) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265 – 275.en_US
dc.identifier.citedreferenceMangan J. L. and Whittaker V. P. ( 1966 ) The distribution of free amino acids in subcellular fractions of guinea-pig brain. Biochem. J. 98, 128 – 137.en_US
dc.identifier.citedreferenceMcLennan H. ( 1981 ) On the nature of the receptors for various amino acids in the mammalian central nervous system, in Glutamate as a Neurotransmitter ( Di Chiara G. and Gessa G. L., eds ), pp. 253 – 262. Raven Press, New York.en_US
dc.identifier.citedreferenceMcLennan H. and Lodge D. ( 1979 ) The antagonism of amino acid-induced excitation of spinal neurons in the cat. Brain Res. 169, 83 – 90.en_US
dc.identifier.citedreferenceMichaelis E. K., Michaelis M. L., Stormann T. M., Chittenden W. L., and Grubbs R. D. ( 1983 ) Purification and molecular characterization of the brain synaptic membrane glutamatebinding protein. J. Neurochem. 40, 1742 – 1753.en_US
dc.identifier.citedreferenceMonaghan D. T., Holets V. R., Toy D. W., and Cotman C. W. ( 1983 ) Anatomical distributions of four pharmacologically distinct 3 H-L-glutamate binding sites. Nature 306, 176 – 179.en_US
dc.identifier.citedreferenceNaito S. and Ueda T. ( 1981 ) Affinity-purified anti-Protein I antibody. J. Biol. Chem. 256, 10657 – 10663.en_US
dc.identifier.citedreferenceNaito S. and Ueda T. ( 1983 ) Adenosine triphosphate-dependent uptake of glutamate into Protein I-associated synaptic vesicles. J. Biol. Chem. 258, 696 – 699.en_US
dc.identifier.citedreferenceNelson N. ( 1980 ) Coupling factors from higher plants. Methods Enzymol. 69, 301 – 313.en_US
dc.identifier.citedreferenceNjus D. and Radda G. K. ( 1978 ) Biogenic processes in chromaffin granules. A new perspective on some old problems. Biochim. Biophys. Acta 463, 219 – 244.en_US
dc.identifier.citedreferenceParsons S. M. and Koenigsberger R. ( 1980 ) Specific stimulated uptake of acetylcholine by Torpedo electric organ synaptic vesicles. Proc. Natl. Acad. Sci. USA 77, 6234 – 6238.en_US
dc.identifier.citedreferencePazoles C. J., Creutz C. E., Ramu A., and Pollard H. B. ( 1980 ) Permeant anion activation of MgATPase activity in chromaffin granules. J. Biol. Chem. 255, 7863 – 7869.en_US
dc.identifier.citedreferencePuil E. ( 1981 ) 5-Glutamate: its interactions with spinal neurons. Brain Res. Rev. 3, 229 – 322.en_US
dc.identifier.citedreferenceRassin D. K. ( 1972 ) Amino acids as putative transmitters: failure to bind to synaptic vesicles of guinea pig cerebral cortex. J. Neurochem. 19, 139 – 148.en_US
dc.identifier.citedreferenceRoberts P. J. and Sharif N. A. ( 1981 ) Radioreceptor binding studies with glutamate and aspartate, in Glutamate as a Neurotransmitter ( Di Chiara G. and Gessa G. L., eds ), pp. 295 – 305. Raven Press, New York.en_US
dc.identifier.citedreferenceSchousboe A. and Hertz L. ( 1981 ) Role of astroglial cells in glutamate homeostasis, in Glutamate as a Neurotransmitter ( Di Chiara G. and Gessa G. L., eds ), pp. 103 – 113. Raven Press, New York.en_US
dc.identifier.citedreferenceStorm-Mathisen J., Leknes A. K., Bore A. T., Vaaland J. L., Edminson P., Haug F.-M. S., and Ottersen O. P. ( 1983 ) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301, 517 – 520.en_US
dc.identifier.citedreferenceToll L., Gundersen C. B. Jr., and Howard B. D. ( 1977 ) Energy utilization in the uptake of catecholamines by synaptic vesicles and adrenal chromaffin granules. Brain Res. 136, 59 – 66.en_US
dc.identifier.citedreferenceUeda T. and Greengard P. ( 1977 ) Adenosine 3′:5′-monophosphate-regulated phosphoprotein system of neuronal membranes. I. Solubilization, purification, and some properties of an endogenous phosphoprotein. J. Biol. Chem. 252, 5155 – 5163.en_US
dc.identifier.citedreferenceUeda T. and Naito S. ( 1982 ) Specific inhibition of the phosphorylation of Protein I, a synaptic protein, by affinity-purified anti-Protein I antibody. Prog. Brain Res. 56, 87 – 103.en_US
dc.identifier.citedreferenceUeda T., Greengard P., Berzins K., Cohen R. S., Blomberg F., Grab D. J., and Siekevitz P. ( 1979 ) Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cAMP-dependent protein kinase. J. Cell Biol. 83, 308 – 319.en_US
dc.identifier.citedreferenceWatkins J. C. and Evans R. H. ( 1981 ) Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 21, 165 – 204.en_US
dc.identifier.citedreferenceWoodbury J. W. ( 1965 ) The cell membrane: ionic and potential gradients and active transport, in Physiology and Biophysics ( Ruch T. C. and Patton H. D., eds ), pp. 1 – 25. W. B. Saunders, Philadelphia.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.