Show simple item record

Activation of muscarinic cholinergic receptors enhances the volume-sensitive efflux of myo-inositol from SH-SY5Y neuroblastoma cells

dc.contributor.authorLoveday, Dannyen_US
dc.contributor.authorHeacock, Anne M.en_US
dc.contributor.authorFisher, Stephen K.en_US
dc.date.accessioned2010-04-01T14:47:33Z
dc.date.available2010-04-01T14:47:33Z
dc.date.issued2003-10en_US
dc.identifier.citationLoveday, Danny; Heacock, Anne M.; Fisher, Stephen K. (2003). "Activation of muscarinic cholinergic receptors enhances the volume-sensitive efflux of myo-inositol from SH-SY5Y neuroblastoma cells." Journal of Neurochemistry 87(2): 476-486. <http://hdl.handle.net/2027.42/65241>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65241
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14511125&dopt=citationen_US
dc.description.abstractA mechanism used by cells to regulate their volume under hypo-osmotic conditions is the release of organic osmolytes, one of which is myo-inositol. The possibility that activation of phospholipase-C-linked receptors can regulate this process has been examined for SH-SY5Y neuroblastoma cells. Incubation of cells with hypo-osmolar buffers (160–250 mOsm) led to a biphasic release of inositol which persisted for up to 4 h and could be inhibited by inclusion of anion channel blockers – results which indicate the involvement of a volume-sensitive organic anion channel. Inclusion of oxotremorine-M, a muscarinic cholinergic agonist, resulted in a marked increase (80–100%) in inositol efflux under hypo-osmotic, but not isotonic, conditions. This enhanced release, which was observed under all conditions of hypo-osmolarity tested, could be prevented by inclusion of atropine. Incubation of the cells with either the calcium ionophore, ionomycin, or the phorbol ester, phorbol 12-myristate 13-acetate, partially mimicked the stimulatory effect of muscarinic receptor activation when added singly, and fully when added together. The ability of oxotremorine-M to facilitate inositol release was inhibited by removal of extracellular calcium, depletion of intracellular calcium or down-regulation of protein kinase C. These results indicate that activation of muscarinic cholinergic receptors can regulate osmolyte release in this cell line.en_US
dc.format.extent541979 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2003 International Society for Neurochemistryen_US
dc.subject.otherCalciumen_US
dc.subject.otherMuscarinic Cholinergic Receptorsen_US
dc.subject.otherMyo-inositolen_US
dc.subject.otherOsmolyteen_US
dc.subject.otherProtein Kinase Cen_US
dc.subject.otherVolume Regulationen_US
dc.titleActivation of muscarinic cholinergic receptors enhances the volume-sensitive efflux of myo-inositol from SH-SY5Y neuroblastoma cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother* Mental Health Research Instituteen_US
dc.identifier.pmid14511125en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65241/1/j.1471-4159.2003.02021.x.pdf
dc.identifier.doi10.1046/j.1471-4159.2003.02021.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAkiba S., Kato E., Sato T. and Fujii T. ( 1992 ) Biscoclaurine alkaloids inhibit receptor-mediated phospholipase A 2 activation probably through uncoupling of a GTP-binding protein from the enzyme in rat peritoneal mast cells. Biochem. Pharmacol. 44, 45 – 50.en_US
dc.identifier.citedreferenceAndrew R. D. ( 1991 ) Seizure and acute osmotic change: clinical and neurophysiological aspects. J. Neurol. Sci. 101, 7 – 18.en_US
dc.identifier.citedreferenceBender A. S., Neary J. T. and Norenberg M. D. ( 1993 ) Role of phosphoinositide hydrolysis in astrocyte volume regulation. J. Neurochem. 61, 1506 – 1514.en_US
dc.identifier.citedreferenceBleasdale J. E., Thakur N. R., Gremban R. S., Bundy G. L., Fitzpatrick F. A., Smith R. J. and Bunting S. ( 1990 ) Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils. J. Pharmacol. Exp. Ther. 255, 756 – 768.en_US
dc.identifier.citedreferenceBrÈs V., Hurbin A., Duvoid A., Orcel H., Moos F. C., Rabie A. and Hussy N. ( 2000 ) Pharmacological characterization of volume-sensitive, taurine permeable anion channels in rat supraoptic glial cells. Br. J. Pharmacol. 130, 1976 – 1982.en_US
dc.identifier.citedreferenceCedazo-MÍnguez A., Popescu B. O., Ankarcrona M., Nishimura T. and Cowburn R. ( 2002 ) The presenilin 1 δE9 mutation gives enhanced basal phospholipase C activity and a resultant increase in intracellular calcium concentrations. J. Biol. Chem. 277, 36646 – 36655.en_US
dc.identifier.citedreferenceCioffi C. L. and Fisher S. K. ( 1990 ) Reduction of muscarinic receptor density and of guanine-nucleotide stimulated phosphoinositide hydrolysis in human SH-SY-5Y neuroblastoma cells following long-term treatment with 12–0-tetradecanoylphorbol-13-acetate or mezerein. J. Neurochem. 54, 1725 – 1734.en_US
dc.identifier.citedreferenceCrepel V., Panenka W., Kelly M. E. and MacVicar B. A. ( 1998 ) Mitogen-activated protein and tyrosine kinases in the activation of astrocyte volume-activated chloride current. J. Neurosci. 18, 1196 – 1206.en_US
dc.identifier.citedreferenceDe Sarno P., Shestopal S. A., King T. D., Zmijewska A., Song L. and Jope R. S. ( 2003 ) Muscarinic receptor activation protects cells from apoptotic effects of DNA damage, oxidative stress, and mitochondrial inhibition. J. Biol. Chem. 278, 11086 – 11093.en_US
dc.identifier.citedreferenceDeleuze C., Duvoid A., Moos F. C. and Hussy N. ( 2000 ) Tyrosine phosphorylation modulates the osmosensitivity of volume-dependent taurine efflux from glial cells in the rat supraoptic nucleus. J. Physiol. 523, 291 – 299.en_US
dc.identifier.citedreferenceDu X. Y. and Sorota S. ( 2000 ) Cardiac swelling-induced chloride current is enhanced by endothelin. J. Cardiovasc. Pharmacol. 35, 769 – 776.en_US
dc.identifier.citedreferenceFan H. T., Morishima S., Kida H. and Okada Y. ( 2001 ) Phloretin differentially inhibits volume-sensitive and cyclic AMP-activated, but not Ca-activated Cl – channels. Br. J. Pharmacol. 133, 1096 – 1106.en_US
dc.identifier.citedreferenceFisher S. K., Figueiredo J. C. and Bartus R. T. ( 1984 ) Differential stimulation of inositol phospholipid turnover in brain by analogs of oxotremorine. J. Neurochem. 43, 1171 – 1179.en_US
dc.identifier.citedreferenceFisher S. K., Domask L. M. and Roland R. M. ( 1989 ) Muscarinic receptor regulation of cytoplasmic Ca 2+ concentrations in human SK-N-SH neuroblastoma cells: Ca 2+ requirements for phospholipase C activation. Mol. Pharmacol. 35, 195 – 204.en_US
dc.identifier.citedreferenceFisher S. K., Heacock A. M., Seguin E. B. and Agranoff B. W. ( 1990 ) Polyphosphoinositides are the major source of inositol phosphates in carbamoylcholine-stimulated SK-N-SH neuroblastoma cells. Mol. Pharmacol. 38, 54 – 63.en_US
dc.identifier.citedreferenceFisher S. K., Heacock A. M. and Agranoff B. W. ( 1992 ) Inositol lipids and signal transduction in the nervous system: an update. J. Neurochem. 58, 18 – 38.en_US
dc.identifier.citedreferenceFisher S. K., Novak J. E. and Agranoff B. W. ( 2002 ) Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J. Neurochem. 82, 736 – 754.en_US
dc.identifier.citedreferenceFisher S. K., Loveday D., Heacock A. M. and Agranoff B. W. ( 2003 ) Muscarinic receptor activation regulates the volume-sensitive efflux of myo-inositol. Transactions of the 34th Annual Meeting of the American Society for Neurochemistry,. J. Neurochem. Suppl. 85, 46.en_US
dc.identifier.citedreferenceHale C. C. and Rubin L. J. ( 1995 ) Ion specificity and stoichiometry of the cardiac inositol transporter. J. Mol. Cell Cardiol. 27, 1123 – 1130.en_US
dc.identifier.citedreferenceHaussinger D., Laubenberger J., vom Dahl S., Ernst T., Bayer S., Langer M., Gerok W. and Hennig J. ( 1994 ) Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107, 1475 – 1480.en_US
dc.identifier.citedreferenceHonegger P. and Richelson E. ( 1976 ) Biochemical differentiation of mechanically dissociated mammalian brain in aggregating cell culture. Brain Res. 109, 335 – 354.en_US
dc.identifier.citedreferenceIsaacks R. E., Bender A. S., Kim C. Y., Shi Y. F. and Norenberg M. D. ( 1999 ) Effect of osmolality and anion channel inhibitors on myo-inositol efflux in cultured astrocytes. J. Neurosci. Res. 57, 866 – 871.en_US
dc.identifier.citedreferenceJackson P. S. and Strange K. ( 1993 ) Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am. J. Physiol. 265, C1489 – C1500.en_US
dc.identifier.citedreferenceKimelberg H. K. ( 2000 ) Cell volume in the CNS: regulation and implications for nervous system function and pathology. Neuroscientist 6, 14 – 25.en_US
dc.identifier.citedreferenceKwan C. Y., Takemura H., Obie J. F., Thastrup O. and Putney J. W. Jr ( 1990 ) Effects of MeCh, thapsigargin, and La 3+ on plasmalemmal and intracellular Ca 2+ transport in lacrimal acinar cells. Am. J. Physiol. 258, C1006 – C1015.en_US
dc.identifier.citedreferenceLambert D. G. and Nahorski S. R. ( 1990 ) Muscarinic-receptor-mediated changes in intracellular Ca 2+ and inositol 1,4,5-trisphosphate mass in a human neuroblastoma cell line, SH-SY5Y. Biochem. J. 265, 555 – 562.en_US
dc.identifier.citedreferenceLambert D. G., Challiss R. A. and Nahorski S. R. ( 1991 ) Accumulation and metabolism of Ins (1,4,5) P 3 and Ins (1,3,4,5) P 4 in muscarinic–receptor–stimulated SH–SY5Y neuroblastoma cells. Biochem. J. 273, 791 – 794.en_US
dc.identifier.citedreferenceLang F., Busch G. L., Ritter M., Volkl H., Waldegger S., Gulbins E. and Haussinger D. ( 1998 ) Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78, 247 – 306.en_US
dc.identifier.citedreferenceLeaney J. L., Marsh S. J. and Brown D. A. ( 1997 ) A swelling-activated chloride current in rat sympathetic neurones. J. Physiol. 501, 555 – 564.en_US
dc.identifier.citedreferenceLee J. H., Arcinue E. and Ross B. D. ( 1994 ) Brief report: organic osmolytes in the brain of an infant with hypernatremia. N. Engl. J. Med. 331, 439 – 442.en_US
dc.identifier.citedreferenceLien Y. H., Shapiro J. I. and Chan L. ( 1990 ) Effects of hypernatremia on organic brain osmoles. J. Clin. Invest. 85, 1427 – 1435.en_US
dc.identifier.citedreferenceLien Y. H., Shapiro J. I. and Chan L. ( 1991 ) Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis. J. Clin. Invest. 88, 303 – 309.en_US
dc.identifier.citedreferenceLinseman D. A., McEwen E. L., Sorensen S. D. and Fisher S. K. ( 1998 ) Cytoskeletal and phosphoinositide requirements for muscarinic receptor signaling to focal adhesion kinase and paxillin. J. Neurochem. 70, 940 – 950.en_US
dc.identifier.citedreferenceLinseman D. A., Hofmann F. and Fisher S. K. ( 2000 ) A role for the small molecular weight GTPases, Rho and Cdc42, in muscarinic receptor signaling to focal adhesion kinase. J. Neurochem. 74, 2010 – 2020.en_US
dc.identifier.citedreferenceLÖhr J. W., McReynolds J., Grimaldi T. and Acara M. ( 1988 ) Effect of acute and chronic hypernatremia on myoinositol and sorbitol concentration in rat brain and kidney. Life Sci. 43, 271 – 276.en_US
dc.identifier.citedreferenceManolopoulos G. V., Prenen J., Droogmans G. and Nilius B. ( 1997 ) Thrombin potentiates volume-activated chloride currents in pulmonary artery endothelial cells. PflÜgers Arch. 433, 845 – 847.en_US
dc.identifier.citedreferenceMcManus M. L., Churchwell K. B. and Strange K. ( 1995 ) Regulation of cell volume in health and disease. N. Engl. J. Med. 333, 1260 – 1266.en_US
dc.identifier.citedreferenceMongin A. A. and Kimelberg H. K. ( 2002 ) ATP potently modulates anion channel-mediated excitatory amino acid release from cultured astrocytes. Am. J. Physiol. Cell Physiol. 283, C569 – C578.en_US
dc.identifier.citedreferenceMongin A. A., Reddi J. M., Charniga C. and Kimelberg H. K. ( 1999 ) [ 3 H]taurine and D-[ 3 H]aspartate release from astrocyte cultures are differently regulated by tyrosine kinases. Am. J. Physiol. 276, C1226 – C1230.en_US
dc.identifier.citedreferenceMorales-Mulia S., Cardin V., Torres-Marquez M. E., Crevenna A. and Pasantes-Morales H. ( 2001 ) Influence of protein kinases on the osmosensitive release of taurine from cerebellar granule neurons. Neurochem. Int. 38, 153 – 161.en_US
dc.identifier.citedreferenceNilius B., Eggermont J., Voets T., Buyse G., Manolopoulos V. and Droogmans G. ( 1997 ) Properties of volume-regulated anion channels in mammalian cells. Prog. Biophys. Mol. Biol. 68, 69 – 119.en_US
dc.identifier.citedreferenceNovak J. E., Turner R. S., Agranoff B. W. and Fisher S. K. ( 1999 ) Differentiated human NT2-N neurons possess a high intracellular content of myo-inositol. J. Neurochem. 72, 1431 – 1440.en_US
dc.identifier.citedreferenceNovak J. E., Agranoff B. W. and Fisher S. K. ( 2000 ) Regulation of myo -inositol homeostasis in differentiated human NT2-N neurons. Neurochem. Res. 25, 561 – 566.en_US
dc.identifier.citedreferenceOffermanns S., Bombien E. and Schultz G. ( 1993 ) Stimulation of tyrosine phosphorylation and mitogen-activated-protein (MAP) kinase activity in human SH-SY5Y neuroblastoma cells by carbachol. Biochem. J. 294, 545 – 550.en_US
dc.identifier.citedreferencePandol S. J., Schoeffield M. S., Fimmel C. J. and Muallem S. ( 1987 ) The agonist-sensitive calcium pool in the pancreatic acinar cell. Activation of plasma membrane Ca 2+ influx mechanism. J. Biol. Chem. 262, 16963 – 16968.en_US
dc.identifier.citedreferencePasantes-Morales H., Cardin V. and Tuz K. ( 2000 ) Signaling events during swelling and regulatory volume decrease. Neurochem. Res. 25, 1301 – 1314.en_US
dc.identifier.citedreferenceRosner H., Vacun G. and Rebhan M. ( 1995 ) Muscarinic receptor-mediated induction of actin-driven lamellar protrusions in neuroblastoma cell somata and growth cones. Involvement of protein kinase C. Eur. J. Cell Biol. 66, 324 – 334.en_US
dc.identifier.citedreferenceShuttleworth T. J. and Thompson J. L. ( 1999 ) Discriminating between capacitative and arachidonate-activated Ca 2+ entry pathways in HEK293 cells. J. Biol. Chem. 274, 31174 – 31178.en_US
dc.identifier.citedreferenceSlowiejko D. M., Levey A. I. and Fisher S. K. ( 1994 ) Sequestration of muscarinic cholinergic receptors in permeabilized neuroblastoma cells. J. Neurochem. 62, 1795 – 1803.en_US
dc.identifier.citedreferenceSorensen S. D., Linseman D. A. and Fisher S. K. ( 1999 ) Distinct mechanisms for the endocytosis of muscarinic receptors and Gq/11. Eur. J. Pharmacol. 372, 325 – 328.en_US
dc.identifier.citedreferenceStrange K., Morrison R., Shrode L. and Putnam R. ( 1993 ) Mechanism and regulation of swelling-activated inositol efflux in brain glial cells. Am. J. Physiol. 265, C244 – C256.en_US
dc.identifier.citedreferenceThompson A. K. and Fisher S. K. ( 1990 ) Relationship between agonist-induced muscarinic receptor loss and desensitization of stimulated phosphoinositide turnover in two neuroblastomas: methodological considerations. J. Pharmacol. Exp. Ther. 252, 744 – 752.en_US
dc.identifier.citedreferenceThurston J. H., Sherman W. R., Hauhart R. E. and Kloepper R. F. ( 1989 ) myo-Inositol: a newly identified nonnitrogenous osmoregulatory molecule in mammalian brain. Pediatr. Res. 26, 482 – 485.en_US
dc.identifier.citedreferenceTsumura T., Oiki S., Ueda S., Okuma M. and Okada Y. ( 1996 ) Sensitivity of volume-sensitive Cl – conductance in human epithelial cells to extracellular nucleotides. Am. J. Physiol. 271, C1872 – C1878.en_US
dc.identifier.citedreferenceVideen J. S., Michaelis T., Pinto P. and Ross B. D. ( 1995 ) Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study. J. Clin. Invest. 95, 788 – 793.en_US
dc.identifier.citedreferenceWilkinson S. E., Parker P. J. and Nixon J. S. ( 1993 ) Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochem. J. 294, 335 – 337.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.