Show simple item record

Blood-Brain Barrier Transport of 1-Aminocyclohexanecarboxylic Acid, a Nonmetabolizable Amino Acid for In Vivo Studies of Brain Transport

dc.contributor.authorAoyagi, Masakien_US
dc.contributor.authorAgranoff, Bernard W.en_US
dc.contributor.authorWashburn, Lee C.en_US
dc.contributor.authorSmith, Quentin R.en_US
dc.date.accessioned2010-04-01T14:50:02Z
dc.date.available2010-04-01T14:50:02Z
dc.date.issued1988-04en_US
dc.identifier.citationAoyagi, Masaki; Agranoff, Bernard W.; Washburn, Lee C.; Smith, Quentin R. (1988). "Blood-Brain Barrier Transport of 1-Aminocyclohexanecarboxylic Acid, a Nonmetabolizable Amino Acid for In Vivo Studies of Brain Transport." Journal of Neurochemistry 50(4): 1220-1226. <http://hdl.handle.net/2027.42/65285>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65285
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=3346675&dopt=citationen_US
dc.description.abstractRegional transport of 1-aminocyclohexanecarboxylic acid (ACHC), a nonmetabolizable amino acid, across the blood-brain barrier was studied in pentobarbital-anesthetized rats using an in situ brain perfusion technique. The concentration dependence of influx was best described by a model with a saturable and a nonsaturable component. Best-fit values for the kinetic constants of the frontal cortex equaled 9.7 × 10- −4 Μmol/s/g for V max , 0.054 Μmol/ml for K m , and 1.0 × 10- −4 ml/s/g for K D in the absence of competing amino acids. Saturable influx could be reduced by >85% by either l-phenylalanine or 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with transport by the cerebrovascular neutral amino acid transport system. The transport K m for ACHC was one-fifth that for the more commonly used homologue, I-aminocyclopentanecarboxylic acid, and was similar to values for several natural amino acids, such as l-methionine, l-isoleucine, and l-tyrosine. The results indicate that ACHC may be a useful probe for in vivo studies of amino acid transport into brain.en_US
dc.format.extent745787 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1988 International Society for Neurochemistryen_US
dc.subject.otherAmino Aciden_US
dc.subject.otherBlood-brain Barrieren_US
dc.subject.otherTransporten_US
dc.subject.otherCapillaryen_US
dc.subject.otherBrainen_US
dc.subject.otherRaten_US
dc.titleBlood-Brain Barrier Transport of 1-Aminocyclohexanecarboxylic Acid, a Nonmetabolizable Amino Acid for In Vivo Studies of Brain Transporten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Neuroscience Laboratory, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherLaboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, Marylanden_US
dc.contributor.affiliationotherMedical and Health Sciences Division, Oak Ridge Associated Universities, Oak Ridge, Tennessee, U.S.Aen_US
dc.identifier.pmid3346675en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65285/1/j.1471-4159.1988.tb10596.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1988.tb10596.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBergstrom M., Ericson K., Hagenfeldt L., Mosskin M., Von Holst H., Noren G., Eriksson L., Ehrin E., and Johnstroem P. ( 1987 ) PET study of methionine accumulation in glioma and normal brain tissue: competition with branched chain amino acids. J. Comp. Assist. Tomogr. 11, 208 – 213.en_US
dc.identifier.citedreferenceChristensen H. N. ( 1973 ) On the development of amino acid transport systems. Fed. Proc. 32, 19 – 28.en_US
dc.identifier.citedreferenceChristensen H. N. and Jones J. C. ( 1962 ) Amino acid transport models: renal resorption and resistance to metabolic attack. J. Biol. Chem. 237, 1203 – 1206.en_US
dc.identifier.citedreferenceComar D., Saudubray J. M., Duthilheul A., Delforge J., Maziere M., Berger G., Charpenter C., and Todd-Popropek A. ( 1981 ) Brain uptake of 11-C-l-methionine in phenylketonuria. Eur. J. Pediatr. 136, 13 – 19.en_US
dc.identifier.citedreferenceConnors T. A. and Ross W. C. J. ( 1960 ) Some derivatives of 1-aminocyclopentanecarboxylic acid and related compounds. J. Chem. Soc. 2119 – 2132.en_US
dc.identifier.citedreferenceCunningham V. J., Hargreaves R. J., Pelling D., and Moorhouse S. R. ( 1986 ) Regional blood-brain glucose transfer in the rat: a novel double-membrane kinetic analysis. J. Cereb. Blood Flow Metab. 6, 305 – 314.en_US
dc.identifier.citedreferenceDeFeudis F. V. ( 1986 ) The brain is protected from nutrient excess. Life Sci. 40, 1 – 9.en_US
dc.identifier.citedreferenceGjedde A. and Christensen O. ( 1984 ) Estimates of MichaelisMenten constants for the two membranes of the brain endothelium. J. Cereb. Blood Flow Metab. 4, 241 – 249.en_US
dc.identifier.citedreferenceHawkins R. A., Mans A. M., and Biebuyck J. F. ( 1982 ) Amino acid supply to individual cerebral structures in awake and anesthetized rats. Am. J. Physiol. 242, E1 – E11.en_US
dc.identifier.citedreferenceHayes R. L., Washburn L. C., Wieland B. W., Sun T. T., Anon J. B., Butler T. A., and Callahan A. P. ( 1978 ) Synthesis and purification of 11 C-carboxyl-labeled amino acids. Int. J. Appl. Radiat. Isot. 29, 186 – 187.en_US
dc.identifier.citedreferenceKlein R. A., Moore M. J., and Smith M. W. ( 1971 ) Selective diffusion of neutral amino acids across lipid bilayers. Biochim. Biophys. Acta 233, 420 – 433.en_US
dc.identifier.citedreferenceLeo A., Hansch C., and Elkins D. ( 1971 ) Partition coefficients and their uses. Chem. Rev. 71, 525 – 616.en_US
dc.identifier.citedreferenceMans A. M., Biebuyck J. F., Shelly K., and Hawkins R. A. ( 1982 ) Regional blood-brain barrier permeability to amino acids after portacaval anastomosis. J. Neurochem. 38, 705 – 717.en_US
dc.identifier.citedreferenceMiller G. R. ( 1966 ) Simultaneous Statistical Inference, pp. 76 – 81. McGraw-Hill, New York.en_US
dc.identifier.citedreferenceMomma S., Aoyagi M., Rapoport S. I., and Smith Q. R. ( 1987 ) Phenylalanine transport across the blood-brain barrier as studied with the in situ brain perfusion technique. J. Neurochem. 48, 1291 – 1300.en_US
dc.identifier.citedreferenceOldendorf W. H. ( 1971 ) Brain uptake ofradiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Phvsiol. 221, 1629 – 1639.en_US
dc.identifier.citedreferenceOldendorf W. H. and Szabo J. ( 1976 ) Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am. J. Physiol. 230, 94 – 98.en_US
dc.identifier.citedreferenceOxender D. L. and Christensen H. N. ( 1963 ) Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J. Biol. Chem. 238, 3686 – 3699.en_US
dc.identifier.citedreferencePardridge W. M. ( 1977 ) Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 28, 103 – 108.en_US
dc.identifier.citedreferencePardridge W. M. ( 1983 ) Brain metabolism: a perspective from the blood-brain barrier. Physiol. Rev. 63, 1481 – 1535.en_US
dc.identifier.citedreferencePardridge W. M. and Oldendorf W. H. ( 1975 ) Kinetic analysis of blood-brain barrier transport of amino acids. Biochim. Biophys. Acta 401, 128 – 136.en_US
dc.identifier.citedreferencePhelps M. E., Barrio J. R., Huang S. C., Keen R. E., Chugani H., and Mazziotta J. C. ( 1985 ) Measurement of cerebral protein synthesis in man with positron computerized tomography: model, assumptions, and preliminary results, in The Metabolism of the Human Brain Studied with Positron Emission Tomography ( Greitz T., Ingvar D. H., and Widen L., eds ). pp. 215 – 232. Raven Press, New York.en_US
dc.identifier.citedreferenceRapoport S. I., Ohno K., and Pettigrew K. D. ( 1979 ) Drug entry into the brain. Brain Res. 172, 354 – 359.en_US
dc.identifier.citedreferenceSmith Q. R. and Takasato Y. ( 1986 ) Kinetics of amino acid transport at the blood-brain barrier studied using an in situ brain perfusion technique. Ann. NY Acad. Sci. 481, 186 – 201.en_US
dc.identifier.citedreferenceSmith Q. R., Takasato Y., Sweeney D. J., and Rapoport S. I. ( 1985 ) Regional cerebrovascular transport of leucine as measured with the in situ brain perfusion technique. J. Cereb. Blood Flow Metab. 5, 300 – 311.en_US
dc.identifier.citedreferenceSmith Q. R., Momma S., Aoyagi M., and Rapoport S. I. ( 1987 ) Kinetics of neutral amino acid transport across the bloodbrain barrier. J. Neurochem. 49, 1651 – 1658.en_US
dc.identifier.citedreferenceTakasato Y., Rapoport S. I., and Smith Q. R. ( 1984 ) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol. 247, H484 – H493.en_US
dc.identifier.citedreferenceWade L. A. and Katzman R. ( 1975 ) Synthetic amino acids and the nature of l-dopa transport at the blood-brain barrier. J. Neurochem. 25, 837 – 842.en_US
dc.identifier.citedreferenceWashburn L. C., Sun T. T., Byrd B. L., Hayes R. L., Butler T. A., and Callahan A. P. ( 1979 ) High-level production of C-11-carboxyl-labeled amino acids, in Radiopharmaceuticals II, pp. 767 – 776. Society for Nuclear Medicine, New York.en_US
dc.identifier.citedreferenceWashburn L. C., Ringenberg R. E., Sun T. T., and Hayes R. L. ( 1981 ) 11 C-Labeled 1-aminocyclohexanecarboxylic acid ( 11 C-ACHC), a potential agent for studies of amino acid transport in the brain. J. Label. Comp. Radiopharm. 18, 13 – 14.en_US
dc.identifier.citedreferenceWashburn L. C., Sun T. T., Byrd B. L., Rafter J. J., Hayes R. L., Frey K. A., and Agranoff B. W. ( 1982 ) 11 C-ACHC, a potential agent for positron tomographic measurement of brain amino acid transport, in Nuclear Medicine and Biology, Vol. 1 ( Raynaud C., ed ), pp. 642 – 645. Pergamon Press, Paris.en_US
dc.identifier.citedreferenceWeissbach L., Handlogten M. E., Christensen H. N., and Kilberg M. S. ( 1982 ) Evidence for two Na + -independent neutral amino acid transport systems in primary cultures of rat hepatocytes. J. Biol. Chem. 257, 12006 – 12011.en_US
dc.identifier.citedreferenceYunger L. M. and Cramer R. D. ( 1981 ) Measurement and correlation of partition coefficients of polar amino acids. Mol. Pharmacol. 20, 602 – 608.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.