Show simple item record

Do inbreeding depression and relative male fitness explain the maintenance of androdioecy in white mangrove, Laguncularia racemosa (Combretaceae)?

dc.contributor.authorLandry, Carol L.en_US
dc.contributor.authorRathcke, Beverly J.en_US
dc.date.accessioned2010-04-01T14:51:20Z
dc.date.available2010-04-01T14:51:20Z
dc.date.issued2007-12en_US
dc.identifier.citationLandry, Carol L.; Rathcke, Beverly J. (2007). "Do inbreeding depression and relative male fitness explain the maintenance of androdioecy in white mangrove, Laguncularia racemosa (Combretaceae)?." New Phytologist 176(4): 891-901. <http://hdl.handle.net/2027.42/65308>en_US
dc.identifier.issn0028-646Xen_US
dc.identifier.issn1469-8137en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65308
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17924948&dopt=citationen_US
dc.description.abstract•  Mathematical models predict that to maintain androdioecious populations, males must have at least twice the fitness of male function in hermaphrodites. To understand how androdioecy is maintained in Laguncularia racemosa (white mangrove), outcrossing, inbreeding depression, and relative male fitness were estimated in two androdioecious populations and one hermaphroditic population. •  Outcrossing was estimated based on length of pollinator foraging bout and pollen carryover assumptions. Inbreeding depression was measured at three life stages: fruit set, seedling emergence, and seedling survivorship. The relative fitnesses of males and the male component of hermaphrodites were compared at these three stages and at the pollen production stage. Male frequency predictions generated by Lloyd's model were compared with observed frequencies in two androdioecious subpopulations. •  Outcrossing estimates were moderate for all populations (0.29–0.66). Inbreeding depression varied among populations (–0.03–0.86), but the strength of inbreeding depression did not increase with male frequency. Males produced significantly more flowers/inflorescence than hermaphrodites, but pollen production/flower did not differ. Male and hermaphroditic progeny did not differ significantly at other life stages. •  Populations of white mangrove with male plants were functionally androdioecious. Lloyd's model accurately predicted male frequency in one androdioecious subpopulation, but underestimated male frequency in the second subpopulation. New Phytologist (2007) 176 : 891–901 © The Authors (2007). Journal compilation © New Phytologist (2007) doi : 10.1111/j.1469-8137.2007.02228.xen_US
dc.format.extent175841 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© The Authors (2007). Journal compilation © New Phytologist (2007)en_US
dc.subject.otherAndrodioecyen_US
dc.subject.otherBreeding Systemen_US
dc.subject.otherInbreeding Depressionen_US
dc.subject.otherLaguncularia Racemosaen_US
dc.subject.otherMale Fitnessen_US
dc.subject.otherPollinationen_US
dc.subject.otherWhite Mangroveen_US
dc.titleDo inbreeding depression and relative male fitness explain the maintenance of androdioecy in white mangrove, Laguncularia racemosa (Combretaceae)?en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid17924948en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65308/1/j.1469-8137.2007.02228.x.pdf
dc.identifier.doi10.1111/j.1469-8137.2007.02228.xen_US
dc.identifier.sourceNew Phytologisten_US
dc.identifier.citedreferenceAkimoto J, Fukuhara T, Kikuzawa K. 1999. Sex ratios and genetic variation in a functionally androdioecious species, Schizopepon bryoniaefolius (Cucurbitaceae). American Journal of Botany 86 : 880 – 886.en_US
dc.identifier.citedreferenceAppanah S. 1982. Pollination of androdioecious Xerospermum intermedium Radlk. (Sapindaceae) in a rain forest. Biological Journal of the Linnean Society 18 : 11 – 34.en_US
dc.identifier.citedreferenceBaker HG. 1955. Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9 : 347 – 348.en_US
dc.identifier.citedreferenceCharlesworth D. 1984. Androdioecy and the evolution of dioecy. Biological Journal of the Linnean Society 23 : 333 – 348.en_US
dc.identifier.citedreferenceCharlesworth D. 2006. Evolution of plant breeding systems. Current Biology 16 : R726 – R735.en_US
dc.identifier.citedreferenceCharlesworth B, Charlesworth D. 1978. A model for the evolution of dioecy and gynodioecy. American Naturalist 112 : 975 – 997.en_US
dc.identifier.citedreferenceCorrell DS, Correll HB. 1982. Flora of the Bahama Archipelago. Vaduz, Liechtenstein : Cramer.en_US
dc.identifier.citedreferenceDarwin C. 1888. The different forms of flowers on plants of the same species. Facsimile edition, 1986. Chicago, IL, USA : University of Chicago Press.en_US
dc.identifier.citedreferenceDommee B, Geslot A, Thompson JD, Reille M, Denelle N. 1999. Androdioecy in the entomophilous tree Fraxinus ornus (Oleaceae). New Phytologist 143 : 419 – 426.en_US
dc.identifier.citedreferenceExell AW. 1931. The genera of Combretaceae. Journal of Botany 69 : 113 – 128.en_US
dc.identifier.citedreferenceHarder LD, Barrett SCH. 1996. Pollen dispersal and mating patterns in animal-pollinated plants. In : Lloyd DG, Barrett SCH, eds. Floral biology: studies on floral evolution in animal-pollinated plants. New York, NY, USA : Chapman & Hall, 140 – 190.en_US
dc.identifier.citedreferenceIshida K, Hiura T. 1998. Pollen fertility and flowering phenology in an androdioecious tree, Fraxinus lanuginosa (Oleaceae), in Hokkaido, Japan. International Journal of Plant Science 159 : 941 – 947.en_US
dc.identifier.citedreferenceKass LB. 2005. An illustrated guide to common plants of San Salvador Island, Bahamas, 2nd edn. San Salvador Island, Bahamas : Gerace Research Center.en_US
dc.identifier.citedreferenceKearns CA, Inouye DW. 1993. Techniques for pollination biologists. Niwot, CO, USA : University Press of Colorado.en_US
dc.identifier.citedreferenceLandry CL. 2005. Androdioecy in white mangrove ( Laguncularia racemosa ): maintenance of a rare breeding system through plant–pollinator interactions. PhD Thesis. Ann Arbor, MI, USA : University of Michigan.en_US
dc.identifier.citedreferenceLandry C, Rathcke BJ, Kass LB, Elliott NB, Boothe R. 2005. Flower visitors to white mangrove: a comparison between three Bahamian islands and Florida. In : Buckner S, McGrath T, eds. Proceedings of the 10th Symposium on the Natural History of the Bahamas. San Salvador Island, Bahamas : Gerace Research Center, 84 – 94.en_US
dc.identifier.citedreferenceLepart J, Dommee B. 1992. Is Phillyrea angustifolia L. (Oleaceae) an androdioecious species? Botanical Journal of the Linnean Society 108 : 375 – 387.en_US
dc.identifier.citedreferenceListon A, Rieseberg LH, Elias TS. 1990. Datisca glomerata is functionally androdioecious. Nature 343 : 641 – 642.en_US
dc.identifier.citedreferenceLloyd DG. 1975. The maintenance of gynodioecy and androdioecy in Angiosperms. Genetica 45 : 325 – 339.en_US
dc.identifier.citedreferenceLopez-Almansa JC, Pannell JR, Gil L. 2003. Female sterility in Ulmus minor (Ulmaceae): a hypothesis invoking the cost of sex in a clonal plant. American Journal of Botany 90 : 603 – 609.en_US
dc.identifier.citedreferenceMuenchow GE. 1998. Subandrodioecy and male fitness in Sagittaria lancifolia subsp. lancifolia (Alismataceae). American Journal of Botany 85 : 513 – 520.en_US
dc.identifier.citedreferencePannell J. 1997a. The maintenance of gynodioecy and androdioecy in a metapopulation. Evolution 51 : 10 – 20.en_US
dc.identifier.citedreferencePannell J. 1997b. Widespread functional androdioecy in Mercurialis annua L. (Euphorbiaceae). Biological Journal of the Linnean Society 61 : 95 – 116.en_US
dc.identifier.citedreferencePannell J. 1997c. Mixed genetic and environmental sex determination in an androdioecious population of Mercurialis annua. Heredity 78 : 50 – 56.en_US
dc.identifier.citedreferencePannell JR. 2002. The evolution and maintenance of androdioecy. Annual Review of Ecology and Systematics 33 : 397 – 425.en_US
dc.identifier.citedreferencePhilbrick CT, Rieseberg LH. 1994. Pollen production in the androdioecious Datisca glomerata (Datiscaceae): implications for breeding system equilibrium. Plant Species Biology 9 : 43 – 46.en_US
dc.identifier.citedreferenceRathcke B, Kass L, Hunt RE. 1996. Preliminary observations on plant reproductive biology in mangrove communities on San Salvador Island, Bahamas. In : Elliott NB, Edwards DC, Godfrey PJ, eds. Proceedings of the Sixth Symposium on the Natural History of the Bahamas. San Salvador Island, Bahamas : Bahamian Field Station, 87 – 96.en_US
dc.identifier.citedreferenceRathcke BJ, Kass LB, Elliott NB. 2001a. Flower visitors to black mangrove and white mangrove on San Salvador Island, Bahamas. In : Clark-Simpson C, Smith G, eds. Proceedings of the Eighth Symposium on the Natural History of the Bahamas. San Salvador Island, Bahamas : Gerace Research Center, 68 – 77.en_US
dc.identifier.citedreferenceRathcke BJ, Landry CL, Kass LB. 2001b. White mangrove: are males necessary?. In : Clark-Simpson C, Smith G, eds. Proceedings of the Eighth Symposium on the Natural History of the Bahamas. San Salvador Island, Bahamas : Gerace Research Center, 89 – 96.en_US
dc.identifier.citedreferenceRichards AJ. 1997. Plant breeding systems. New York, NY, USA : Chapman & Hall.en_US
dc.identifier.citedreferenceRieseberg LH, Hanson MA, Philbrick CT. 1992. Androdioecy is derived from dioecy in Datiscaceae: evidence from restriction site mapping of PCR amplified chloroplast DNA. Systematic Botany 17 : 324 – 336.en_US
dc.identifier.citedreferenceRieseberg LH, Philbrick CT, Pack PE, Hanson MA, Fritsch P. 1993. Inbreeding depression in androdioecious populations of Datisca glomerata (Datiscaceae). American Journal of Botany 80 : 757 – 762.en_US
dc.identifier.citedreferenceRoss MD. 1982. Five evolutionary pathways to subdioecy. American Naturalist 119 : 297 – 318.en_US
dc.identifier.citedreferenceRoss MD, Weir BS. 1976. Maintenance of males and females in hermaphrodite populations and the evolution of dioecy. Evolution 30 : 425 – 441.en_US
dc.identifier.citedreferenceSnow AA, Spira TP, Simpson R, Klips RA. 1996. The ecology of geitonogamous pollination. In : Lloyd DG, Barrett SCH, eds. Floral biology: studies on floral evolution in animal-pollinated plants. New York, NY, USA : Chapman & Hall, 191 – 216.en_US
dc.identifier.citedreferenceSpencer SC, Rieseberg LH. 1995. The importance of flowering time and flower number in the relative fitness of males and hermaphrodites in Datisca glomerata (Datiscaceae). Plant Species Biology 10 : 65 – 69.en_US
dc.identifier.citedreferenceTomlinson PB. 1980. The biology of trees native to tropical Florida. Petersham, MA, USA : Published privately.en_US
dc.identifier.citedreferenceTomlinson PB. 1994. The Botany of Mangroves. New York, NY, USA : Cambridge University Press.en_US
dc.identifier.citedreferenceTomlinson PB. 2001. The Biology of Trees Native to Tropical Florida, 2nd edn. Petersham, MA, USA : Published privately.en_US
dc.identifier.citedreferenceTraveset A. 1994. Reproductive biology of Phillyrea angustifolia L. (Oleaceae) and effect of galling-insects on its reproductive output. Botanical Journal of the Linnean Society 114 : 153 – 166.en_US
dc.identifier.citedreferenceVassiliadis C, Valero M, Saumitou-Laprade P, Godelle B. 2000. A model for the evolution of high frequencies of males in an androdioecious plant based on a cross-compatibility advantage of males. Heredity 85 : 413 – 422.en_US
dc.identifier.citedreferenceVerdu M, Gonzalez-Martinez SC, Montilla AI, Mateu I, Pannell JR. 2006. Ovule discounting in an outcrossing, cryptically dioecious tree. Evolution 60 : 2056 – 2063.en_US
dc.identifier.citedreferenceWillson MF. 1979. Sexual selection in plants. American Naturalist 113 : 777 – 790.en_US
dc.identifier.citedreferenceWillson MF. 1983. Plant reproductive ecology. New York, NY, USA : John Wiley and Sons.en_US
dc.identifier.citedreferenceWolf DE, Takebayashi N. 2004. Pollen limitation and the evolution of androdioecy from dioecy. American Naturalist 163 : 122 – 137.en_US
dc.identifier.citedreferenceWyatt R. 1983. Pollinator–plant interactions and the evolution of breeding systems. In : Real L, ed. Pollination biology. Orlando, FL, USA : Academic Press, 51 – 95.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.