Show simple item record

Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat

dc.contributor.authorZhu, J. X.en_US
dc.contributor.authorWu, X. Y.en_US
dc.contributor.authorOwyang, Chungen_US
dc.contributor.authorLi, Y.en_US
dc.date.accessioned2010-04-01T14:51:37Z
dc.date.available2010-04-01T14:51:37Z
dc.date.issued2001-02en_US
dc.identifier.citationZhu, J. X.; Wu, X. Y.; Owyang, C.; Li, Y. (2001). "Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat." The Journal of Physiology 530(3): 431-442. <http://hdl.handle.net/2027.42/65313>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65313
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11158274&dopt=citationen_US
dc.format.extent1003082 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© The Physiological Society 2001en_US
dc.titleIntestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the raten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumGastroenterology Research Unit, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USAen_US
dc.identifier.pmid11158274en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65313/1/j.1469-7793.2001.0431k.x.pdf
dc.identifier.doi10.1111/j.1469-7793.2001.0431k.xen_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceAndrews P. L., Davis, C. J., Bingham, S., Davidson, H. I., Hawthorn, J. & Maskell, L. ( 1990 ). The abdominal visceral innervation and the emetic reflex: pathways, pharmacology, and plasticity. Canadian Journal of Physiology and Pharmacology 68, 325 – 345.en_US
dc.identifier.citedreferenceAndrews P. L. R. & Davison, J. S. ( 1990 ). Activation of vagal afferent terminals by 5-HT is mediated by 5-HT 3 receptors in the anaesthetized ferret. Journal of Physiology 422, 92 P.en_US
dc.identifier.citedreferenceBerthoud H. R., Kressel, M., Raybould, H. E. & Nuehuber, W. L.( 1995 ). Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo Dil-tracing. Anatomy and Embryology 191, 203 – 212.en_US
dc.identifier.citedreferenceBjorkland A., Baumgarten, H. G. & Rensch, A.( 1975 ). 5,7-Dihydroxytryptamine: improvement of its selectivity for serotonin neurons in the CNS by pretreatment with desipramine. Journal of Neurochemistry 24, 833 – 835.en_US
dc.identifier.citedreferenceBlackshaw L. A. & Grundy, D. ( 1993 ). Effects of 5-hydroxy-tryptamine on discharge of vagal mucosal receptors from the upper gastrointestinal tract of the ferret. Journal of the Autonomic Nervous System 45, 41 – 50.en_US
dc.identifier.citedreferenceBÜLBRING E. & Crema, A. ( 1959 ). The release of 5-hydroxytryptamine in relation to pressure exerted on the intestinal mucosa. Journal of Physiology 146, 18 – 28.en_US
dc.identifier.citedreferenceBÜLBRING E. & Lin, R. C. Y. ( 1958 ). The effect of intraluminal application of 5-hydroxytryptamine and 5-hydroxytryptophan on peristalsis, the local production of 5-hydroxytryptamine and its release in relation to intraluminal pressure and propulsive activity. Journal of Physiology 140, 381 – 407.en_US
dc.identifier.citedreferenceFogel R., Zhang, X. & Renehan, W. E. ( 1996 ). Relationships between the morphology and function of gastric and intestinal distention-sensitive neurons in the dorsal motor nucleus of the vagus. Journal of Comparative Neurology 364, 78 – 91.en_US
dc.identifier.citedreferenceFujita T., Kobayashim, S., Murakim, S., Sato, K. & Shimoji, K. ( 1979 ). Gut endocrine cells as chemoreceptors. In Gut Peptides: Secretion, Function and Clinical Aspects, ed. Miyoshi, A., pp. 47 – 52 A. Kodansha/Elsevier, Tokyoen_US
dc.identifier.citedreferenceFuller R. W. ( 1978 ). Neurochemical effects of serotonin neurotoxins: an introduction. Annals of the New York Academy of Sciences 305, 178 – 181.en_US
dc.identifier.citedreferenceGershon M. D. ( 1999 ). Roles played by 5-hydroxytryptamine in the physiology of the bowel. Alimentary Pharmacology Therapeutics 13 (suppl. 2), 15 – 30.en_US
dc.identifier.citedreferenceGershon M. D., Sherman, D. L. & Dreyfusm, C. F.( 1980 ). Effects of indolic neurotoxins on enteric serotonergic neurons. Journal of Comparative Neurology 190, 581 – 596.en_US
dc.identifier.citedreferenceGershon M. D., Wade, P. R., Kirchgessner, A. L. & Tamir, H. ( 1990 ). 5-HT receptor subtypes outside the central nervous system. Neuropsychopharmacology 3, 5 – 6.en_US
dc.identifier.citedreferenceGrube D. ( 1976 ). The endocrine cells of the gastrointestinal epithelium and the metabolism of biogenic amines in the gastrointestinal tract. Progress in Histochemistry and Cytochemistry 8, 1 – 128.en_US
dc.identifier.citedreferenceGrundy D. & Scratcherd, T. ( 1989 ). Sensory afferents from the gastrointestinal tract. In Handbook of Physiology, section 6, The Gastrointestinal System, vol. 1, Motility and Circulation, ed. Wood, J. D., pp. 593 – 620. American Physiological Society, Bethesda, MD, USAen_US
dc.identifier.citedreferenceHillsley K., Kirkup, A. J. & Grundy, D.( 1998 ). Direct and indirect actions of 5-hydroxytryptamine on the discharge of mesenteric afferent fibres innervating the rat jejunum. Journal of Physiology 506, 551 – 564.en_US
dc.identifier.citedreferenceHudspeth A. J. ( 1989 ). How the ear's works work. Nature 341, 397 – 404.en_US
dc.identifier.citedreferenceKilpatrick G. J., Jones, B. J. & Tyers, M. B.( 1987 ). Identification and distribution of 5-HT 3 receptors in rat brain using radioligand binding. Nature 330, 746 – 748.en_US
dc.identifier.citedreferenceKirchgessner A. L. & Gershon, M. D. ( 1990 ). Innervation of the pancreas by neurons in the gut. Journal of Neuroscience 10, 1626 – 1642.en_US
dc.identifier.citedreferenceKirchgessner A. L., Tamir, H. & Gershon, M. D. ( 1992 ). Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity induced expression of Fos immunoreactivity. Journal of Neuroscience 12, 235 – 249.en_US
dc.identifier.citedreferenceKoe B. K. & Weissman, A. ( 1966 ). p-Chlorophenylalanine: a specific depletor of brain serotonin. Journal of Pharmacology and Experimental Therapeutics 154, 499 – 516.en_US
dc.identifier.citedreferenceLeysen J. E., Awouters, F., Kenis, L., Laduron, P. M., Vandenberk, J. & Janssen, P. A. J. ( 1981 ). Receptor binding profile of R 41 468, a novel antagonist at 5-HT2 receptors. Life Science 28, 1015 – 1022.en_US
dc.identifier.citedreferenceLi Y., Hao, Y. B. & Owyang, C.( 2000 a ). Diazepam-binding inhibitor mediates feedback regulation of pancreatic secretion and postprandial release of cholecystokinin. Journal of Clinical Investigation 105, 351 – 359.en_US
dc.identifier.citedreferenceLi Y., Hao, Y. B., Zhu, J. X. & Owyang, C. ( 2000 b ). Serotonin released from intestinal enterochromaffin cells mediates luminal non-CCK stimulated pancreatic secretion in rats. Gastroenterology 118, 1197 – 1207.en_US
dc.identifier.citedreferenceLi Y. & Owyang, C. ( 1993 ). Vagal afferent pathways mediate physiological action of cholecystokinin on pancreatic secretion. Journal of Clinical Investigation 92, 418 – 424.en_US
dc.identifier.citedreferenceLi Y. & Owyang, C. ( 1996 a ). Pancreatic secretion evoked by cholecystokinin and non-cholecystokinin-dependent duodenal stimuli via vagal afferent fibres in the rat. Journal of Physiology 494, 773 – 782.en_US
dc.identifier.citedreferenceLi Y. & Owyang, C. ( 1996 b ). Peptone stimulates CCK-releasing peptide secretion by activating intestinal submucosal cholinergic neurons. Journal of Clinical Investigation 97, 1463 – 1470.en_US
dc.identifier.citedreferenceLi Y., Wu, X. Y. & Owyang, C.( 2000 c ). Intestinal serotonin acts as a paracrine substance to mediate pancreatic secretion stimulated by non-CCK dependent luminal factors. Gastroenterology 118, A195.en_US
dc.identifier.citedreferenceLi Y., Zhu, J. & Owyang, C. ( 1999 ). Electrical physiological evidence for high- and low-affinity CCK-A receptors. American Journal of Physiology 277, G469 – 477.en_US
dc.identifier.citedreferenceMawe G. M., Branchek, T. & Gershon, M. D. ( 1986 ). Peripheral neural serotonin receptors: identification and characterization with specific agonists and antagonists. Proceedings of the National Academy of Sciences of the USA 83, 9799 – 9803.en_US
dc.identifier.citedreferenceMei N. ( 1978 ). Vagal glucoreceptors in the small intestine of the cat. Journal of Physiology 282, 485 – 506.en_US
dc.identifier.citedreferenceMei N. ( 1985 ). Intestinal chemosensitivity. Physiological Reviews 65, 211 – 237.en_US
dc.identifier.citedreferenceMei N. & Garnier, L. ( 1986 ). Osmosensitive vagal receptors in the small intestine of the cat. Journal of the Autonomic Nervous System 16, 159 – 170.en_US
dc.identifier.citedreferenceNiederau M., Niederau, C., Strohmeyer, G. & Grendell, J. H. ( 1989 ). Comparative effects of CCK receptor antagonists on rat pancreatic secretion in vivo. American Journal of Physiology 256, G150 – 157.en_US
dc.identifier.citedreferenceNilsson O., Ericson, L. E., Dahlstrom, A., Steinbusch, H. W. M. & Ahlman, H. ( 1985 ). Subcellular localization of serotonin immunoreactivity in rat enterochromaffin cells. Histochemistry 82, 351 – 361.en_US
dc.identifier.citedreferencePeters J. A., Malone, H. M. & Lambert, J. J.( 1992 ). Recent advances in the electrophysiological characterization of 5-HT 3 receptors. Trends in Pharmacological Sciences 13, 391 – 397.en_US
dc.identifier.citedreferencePeters J. A., Malone, H. M. & Lambert, J. J.( 1993 ). An electrophysiological investigation of the properties of 5-HT 3 receptors of rabbit nodose ganglion neurones in culture. British Journal of Pharmacology 110, 665 – 676.en_US
dc.identifier.citedreferencePineiro-Carrero V. M., Clench, M. H., Davis, R. H., Andress, J. M., Franzini, D. A. & Mathias, J. R. ( 1991 ). Intestinal motility changes in rats after enteric serotonergic neuron destruction. American Journal of Physiology 260, G232 – 239.en_US
dc.identifier.citedreferenceRacke K. & Schworer, H. ( 1991 ). Regulation of serotonin release from the intestinal mucosa. Pharmacological Research 23, 13 – 25.en_US
dc.identifier.citedreferenceRaybould H. E. & HÖLZER, H. H. ( 1992 ). Dual capsaicin-sensitive afferent pathways mediate inhibition of gastric emptying in rat induced by carbohydrate. Neuroscience Letters 141, 236 – 238.en_US
dc.identifier.citedreferenceRhodes K. F., Coleman, J. & Lattimer, N. ( 1992 ). A component of 5-HT-evoked depolarization of the rat isolated vagus nerve is mediated by a putative 5-HT 4 receptor. Naunyn-Schmiedeberg's Archives of Pharmacology 346, 496 – 503.en_US
dc.identifier.citedreferenceRichardson B. P., Engel, G., Donatsch, P. & Stadler, P. A. ( 1985 ). Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature 316, 126 – 131.en_US
dc.identifier.citedreferenceRitter R. C., Brenner, L. & Yox, D. P. ( 1992 ). Participation of vagal sensory neurons in putative satiety signals from upper gastrointestinal tract. In Neuroanatomy and Physiology of Abdominal Vagal Afferents, ed. Ritter, S., Ritter, R. C. & Barnes, C. D., pp. 221 – 248. CRC Press, Boca Raton, Ann Arbor, Bostonen_US
dc.identifier.citedreferenceSchwartz G. J. & Moran, Th. ( 1998 ). Duodenal nutrient exposure elicits nutrient-specific gut motility and vagal afferent signals in rat. American Journal of Physiology 274, R1236 – 1242.en_US
dc.identifier.citedreferenceSchworer H., Racke, K. & Kilbinger, H. ( 1987 ). Spontaneous release of endogenous 5-hydroxytryptamine and 5-hydroxyindoleacetic acid from the isolated vascularly perfused ileum of the guinea pig. Neuroscience 21, 297 – 303.en_US
dc.identifier.citedreferenceSharara A. I., Bouras, E. P., Misukonis, M. A. & Liddle, R. ( 1993 ). Evidence for indirect dietary regulation of cholecystokinin release in rats. American Journal of Physiology 265, G107 – 112.en_US
dc.identifier.citedreferenceVande Kar L. D. ( 1991 ). Neuroendocrine pharmacology of serotonergic (5-HT) neurons. Annual Review of Pharmacology and Toxicology 31, 289 – 320.en_US
dc.identifier.citedreferenceWade P. R. & Westfall, J. A. ( 1985 ). Ultrastructure of enterochromaffin cells and associated neural and vascular elements in the mouse duodenum. Cell and Tissue Research 24, 557 – 563.en_US
dc.identifier.citedreferenceWeber L. J. ( 1970 ). p-Chlorophenylalanine depletion of gastrointestinal 5-hydroxytryptamine. Biochemical Pharmacolology 1, 2169 – 2172.en_US
dc.identifier.citedreferenceYoshioka M., Ikeda, T., Abe, M., Togashi, H., Minami, M. & Saito, H. ( 1992 ). Pharmacological characterization of 5-hydroxytryptamine-induced excitation of afferent cervical vagus nerve in anaesthetized rats. British Journal of Pharmacology 10, 544 – 549.en_US
dc.identifier.citedreferenceZhu J. X., Owyang, C. & Li, Y. ( 1998 ). Sensitivity of vagal mucosal afferents to serotonin and its role in the mediation of non-CCK-stimulated pancreatic secretion. Digestive Diseases and Sciences 43, A30.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.