Show simple item record

EFFECT OF LIGHT CYCLE ON DIATOM FATTY ACID COMPOSITION AND QUANTITATIVE MORPHOLOGY 1

dc.contributor.authorSicko-Good, Lindaen_US
dc.contributor.authorSimmons, Milagros S.en_US
dc.contributor.authorLazinsky, Dianeen_US
dc.contributor.authorHall, Janeten_US
dc.date.accessioned2010-04-01T14:52:24Z
dc.date.available2010-04-01T14:52:24Z
dc.date.issued1988-03en_US
dc.identifier.citationSicko-Good, Linda; Simmons, Mila S.; Lazinsky, Diane; Hall, Janet (1988). "EFFECT OF LIGHT CYCLE ON DIATOM FATTY ACID COMPOSITION AND QUANTITATIVE MORPHOLOGY 1 ." Journal of Phycology 24(1): 1-7. <http://hdl.handle.net/2027.42/65327>en_US
dc.identifier.issn0022-3646en_US
dc.identifier.issn1529-8817en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65327
dc.description.abstractQuantitative cytological and fatty acid composition was determined for the diatom Cyclotella meneghiniana KÜtz, Data from four separate experiments were examined to elucidate changes that may occur with respect to daily photoperiod. Overall, fatty acid composition is similar to that reported for other diatoms with the exception that the C16 fatty acids constitute approximately 70% of all fatty acids. The major fatty acids are C14:0, 16:1, 16:0, 18:0, and 20:5. Fatty acids that are present in minor amounts are iso-14:0, iso-15:0, 15:0, 17:0, 18:4, 18:2, 18:1, 19:0, 20:0, 22:0, and 23:0. Cytological composition is similar to that previously reported with the chloroplast and vacuole being the largest compartments within the cell. Changes in both cytological and fatty acid composition were studied with respect to the light / dark cycle. Chloroplast and lipid relative volume are greatest during the early part of the dark period. Nuclear relative volume is lowest in the dark and increases throughout the light period. Total unsaturated fatty acids, including the C20:5 fatty acid, are lowest in the early part of the light period and highest in the dark. The sum of the C16 fatty acids remains constant at 70% of total fatty acids in the cells throughout the light/dark cycle, although percent composition of these two fatty acids shifts. The data suggest that cyclical changes occur in both quantitative morphology and fatty acids composition with respect to daily photoperiod. The cells, although not rigidly synchronized, most likely divide in the latter part of the dark period or in the first hours of the light period. Lipids increase dramatically in the dark. The ecological implications of lipid storage are discussed in relation to lipophilic toxicants.en_US
dc.format.extent909016 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1988 Phycological Society of Americaen_US
dc.subject.otherCyclotellaen_US
dc.subject.otherDiatoms: Fatty Acidsen_US
dc.subject.otherLight Cycleen_US
dc.subject.otherUltrastructureen_US
dc.titleEFFECT OF LIGHT CYCLE ON DIATOM FATTY ACID COMPOSITION AND QUANTITATIVE MORPHOLOGY 1en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumGreat Lakes Research Division, The University of Michigan, Institute of Science and Technology Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65327/1/j.1529-8817.1988.tb04448.x.pdf
dc.identifier.doi10.1111/j.1529-8817.1988.tb04448.xen_US
dc.identifier.sourceJournal of Phycologyen_US
dc.identifier.citedreferenceAckman, R. G., Jangaard, P. M., Hoyle, R. J. & Brocherhoff, H. 1964. Origin of marine fatty acids. I. Analysis of fatty acids produced by the diatom Skeletonema costatum. J. Fish. Res. Board Canada 2 : 747 – 56.en_US
dc.identifier.citedreferenceAtkinson, A. W., Jr., John, P. C. L. & Gunning, B. E. S. 1974. The growth and division of the single mitochondrion and other organelles during the cell cycle of Chlorella, studied by quantitative stereology and three dimensional reconstruction. Protoplasma 81 : 77 – 109.en_US
dc.identifier.citedreferenceBen-Amotz, A., Tornabene, T. G. & Thomas, W. H. 1985. Chemical profile of selected species of microalgae with emphasis on lipids. J. Phycol. 21 : 72 – 81.en_US
dc.identifier.citedreferenceBoyles, D. T. 1980. Toxicity of hydrocarbons and their halogenated derivatives in an aqueous environment. In Afghan, B.K. & Mackay, D. [ Eds. ] Hydrocarbons and Halogenated Hydrocarbons in the Aquatic Environment. Plenum Press, Berlin, pp. 545 – 57.en_US
dc.identifier.citedreferenceBrown, T. E. & Richardson, F. L. 1968. The effect of growth environment on the physiology of algae: Light intensity. J. Phycol. 4 : 38 – 54.en_US
dc.identifier.citedreferenceCanton, J. H., Van Esch, G. J., Greve, P. A. & van Hellemond, A. B. A. M. 1977. Accumulation and elimination of Α-hex-achlorocyclohexane (HCH) by the marine algae Chlamydomonas and Dunaliella. Water Res. 11 : 111 – 5.en_US
dc.identifier.citedreferenceChisholm, S. W. 1981. Temporal patterns of cell division in unicellular algae. Can. Bull. Fish. Aquat. Sci. 210 : 150 – 81.en_US
dc.identifier.citedreferenceChisholm, S. W. & Costello, J. C. 1980. Influence of environmental factors and population composition on the timing of cell division in Thalassiosira fluviatilis (Bacillariophyceae) growth on light/dark cycles. J. Phycol. 16 : 375 – 83.en_US
dc.identifier.citedreferenceChisholm, S. W., Morel, F. M. M. & Slocum, W. S. 1980. The phasing and distribution of cell division cycles in marine diatoms. In Falkowski, P. [ Ed. ] Primary Productivity in the Sea. Brookhaven Symp. Biol. 31, pp. 281 – 300.en_US
dc.identifier.citedreferenceClayton, J. R., Pavlou, S. P. & Breitner, N. F. 1977. Polychlorinated biphenyls in coastal marine zooplankton:bioaccumulation by equilibrium partitioning. Environ. Sci. Technol. 11 : 676 – 82.en_US
dc.identifier.citedreferenceCoombs, J., Darley, W. M., Holm-Hansen, O. & Volcani, B. E. 1967a. Studies on the biochemistry and fine structure of silica shell formation in diatoms. Chemical composition of Navicula pelliculosa during silicon-starvation synchrony. Plant Physiol. 42 : 1601 – 6.en_US
dc.identifier.citedreferenceCoombs, J., Spanis, C. & Volcani, B. E. 1967b. Studies on the biochemistry and fine structure of silica shell formation in diatoms. Photosynthesis and respiration in silicon-starvation synchrony of Navicula pelliculosa. Plant Physiol. 42 : 1607 – 11.en_US
dc.identifier.citedreferenceCosper, E. 1982. Influence of light intentsity on diel variations in rates of growth, respiration and organic release of a marine diatom:comparison of diurnally constant and fluctuating light. J. Plankton Res. 4 : 7050 – 24.en_US
dc.identifier.citedreferenceDarley, W. M. 1977. Biochemical composition. In Werner, D. [ Ed. ] The Biology of Diatoms. University of California Press, pp. 198 – 223.en_US
dc.identifier.citedreferenceDeMort, C. L., Lowry, R., Tinsley, I. & Phinney, H. K. 1972. The biochemical analysis of some estuarine phytoplankton species. I. Fatty acid composition. J. Phycol. 8 : 211 – 16.en_US
dc.identifier.citedreferenceEppley, R. W. & Coatsworth, J. L. 1966. Culture of the marine phytoplankter, Dunaliella tertiolecta, with light/dard cycles. Arch. Mikrobiol. 55 : 66 – 80.en_US
dc.identifier.citedreferenceEppley, R. W., Holmes, R. W. & Paasche, E. 1967. Periodicity in cell division and physiological behavior of Ditylum bright-wellii, a marine plankton diatom, during growthin light/dark cycles. Arch. Mikrobiol. 56 : 305 – 23.en_US
dc.identifier.citedreferenceFisher, N. S. & Schwarzenbach, R. P. 1978. Fatty acid dynamics in Thalassiosira pseudonana (bacillariophyceae):Implications for physiological ecology. J. Phycol. 14 : 143 – 50.en_US
dc.identifier.citedreferenceFogg, G. E. 1956. Photosynthesis and formation of fats in a diatom. Ann. Bot. 20 : 265 – 85.en_US
dc.identifier.citedreferenceGaffal, K. P., Gaffal, S. I. & Schneider, G. J. 1982. Morphometric analysis of several intracellular events occurring during the vegetative life cycle of the unicellular alga Polytoma papillatum. Protoplasma 110 : 185 – 95.en_US
dc.identifier.citedreferenceGanf, G. G., Stone, S. J. L. & Oliver, R. L. 1986. Use of protein to carbohydrate ratios to analyze for nutrient deficiency in phytoplankton. Aust. J. Mar. Freshwat. Res. 47 : 183 – 97.en_US
dc.identifier.citedreferenceGuillard, R. R. L. 1975. Culture of phytoplankton for feeding marine invertebrates. In Smith, W. L. & Chaney, M. H. [ Eds. ] Culture of Marine Invertebrate Animals. Plenum Press, Berlin, pp. 39 – 59.en_US
dc.identifier.citedreferenceHolmes, R. W. 1966. Light microscope observations on cytological manifestations of nitrate, phosphate, and silicate deficiency in four marine centric diatoms. J. Phycol. 2 : 136 – 40.en_US
dc.identifier.citedreferenceHutchinson, T. A., Hellebust, J. A., Tam, D., Mackay, D., Mascarenhas, R. A. & Shiu, W. Y. 1980. The correlation of the toxicity to algae of hydrocarbons and halogenated hydrocarbons with their physical-chemical properties. In Afghan, B.K. & Mackay, E. [ Eds. ] Hydrocarbons and Halogenated Hydrocarbons in the Aquatic Environment. Plenum Press, Berlin, pp. 577 – 86.en_US
dc.identifier.citedreferenceJÖrgensen, E. G. 1966. Photosynthetic activity during the life cycle of synchronous Skeletonema cells. Physiol. Plant. 19 : 789 – 99.en_US
dc.identifier.citedreferenceKates, M. & Volcani, B. E. 1966. Lipid composition of diatoms. Biochim. Biophys. Acta 116 : 264 – 78.en_US
dc.identifier.citedreferenceLewin, J. C., Reimann, B. E., Busby, W. F. & Volcani, B. E. 1966. Silica shell formation in synchronously dividing diatoms. In Cameron, I. L. & Padilla, G. M. [ Eds. ] Cell Synchrony. Academic Press, New York, pp. 169 – 88.en_US
dc.identifier.citedreferenceMeier, D. & Lichtenthaler, H. K. 1981. Ultrastructural development of chlorpoplasts in radish seedlings grwoth in high-and low-light conditions and in the presence of the herbicide benatzon. Protoplasma 107 : 195 – 207.en_US
dc.identifier.citedreferenceMesser, G. & Ben-Shaul, Y. 1972. Changes in chloroplast structure during culture growth of Peridinium cinctum Fa. Westii (Dinphyceae). Phycologia 11 : 291 – 99.en_US
dc.identifier.citedreferenceMetcalfe, L. D. & Schmitz. A. A. 1961. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal. Chem. 33 : 363 – 64.en_US
dc.identifier.citedreferenceMillie, D. F. 1986. Nutrient-limitation effects on the biochemical composition of Cyclotella meneghiniana (Bacillariophyta):an experimental and statistical analysis. Can. J. Bot. 64 : 19 – 26.en_US
dc.identifier.citedreferenceMilner, H. W. 1948. The fatty acids of Chlorella. J. Biol. Chem. 176 : 813 – 7.en_US
dc.identifier.citedreferenceNichols, P. D., Palmisano, A. C., Smith, G. A. & White, D. C. 1986. Lipids of the antarctic sea ice diatom Nitzschia cylindrus. Phytochemistry 25 : 1649 – 53.en_US
dc.identifier.citedreferenceOpute, F. I. 1974. Studies in fat accumulation in Nitzschia palea KÜtz. Ann. Bot. 38 : 889 – 902.en_US
dc.identifier.citedreferenceOrcutt, D. M. & Patterson, G. W. 1975. Sterol, fatty acid and elemental composition of diatoms grown in chemically defined media. Comp. Biochem. Physiol. 50B : 579 – 83.en_US
dc.identifier.citedreferenceOtsuka, H. & Morimura, Y. 1966. Changes of fatty acid composition of Chlorella ellipsoidea during its cell cycle. Plant Cell. Physiol. 7 : 663 – 70.en_US
dc.identifier.citedreferencePohl, P. & Zurheide, F. 1979. Fatty acids and lipids in marine algae and the control of their biosynthesis by environmental factors. In Hope, H. A., Levring, T. & Tanaka, Y. [ Eds. ] Marine Algae in Pharmaceutical Science. Walter de Gruyter, pp. 433 – 523.en_US
dc.identifier.citedreferencePuiseux-Dao, S. 1981. Cell-cycle events in unicellular algae. Can. Bull. Fish. Aquat. Sci. 210 : 130 – 49.en_US
dc.identifier.citedreferenceSchlenk, J., Mangold, H. K., Gellerman, J. L., Link, W. E., Morrissett, R. A., Holman, R. T. & Hayes, T. 1960. Comparative analytical studies of fatty acids of the alga Chlorella pyrenoidosa. J. Am. Oil Chem. Soc. 3 : 547 – 52.en_US
dc.identifier.citedreferenceSchwarzenbach, R. P. & Fisher, N. S. 1978. Rapid determination of the molecular weight distribution of total cellular fatty acids using chemical ionization mass spectrometry. J. Lipid Res. 19 : 12 – 7.en_US
dc.identifier.citedreferenceShaw, R. 1966. Polyunsaturated fatty acids of microorganisms. Adv. Lipid Res. 4 : 111 – 74.en_US
dc.identifier.citedreferenceShifrin, N. S. & Chisholm, S. W. 1981. Phytoplankton lipids:interspecific differences and effects of nitrate, silicate, and light-dark cycles. J. Phycol. 17 : 374 – 84.en_US
dc.identifier.citedreferenceSicko-Goad, L. 1986. Rejuvenation of Melosira granulata (Bacillariophyceae) from the anoxic sediments of Douglas Lake, Michigan. II. Electron Microscopy. J. Phycol. 22 : 28 – 35.en_US
dc.identifier.citedreferenceSicko-Goad, L., Ladewski, B. G. & Lazinsky, D. 1986a. Synergistic effects of nutrients and lead on the quantitative ultrastructure of Cyclotella (Bacillariophyceae). Arch. Environ. Contam. Toxicol. 15 : 291 – 300.en_US
dc.identifier.citedreferenceSicko-Goad, L. & Lazinsky, D. 1986. Quantitative ultrastructural changes associated with lead-coupled luxury phosphate uptake and polyphosphate utilization. Arch. Environ. Contam. Toxicol. 15 : 617 – 27.en_US
dc.identifier.citedreferenceSicko-Goad, L., Schelske, C. L. & Stoermer, E. F. 1984. Estimation of intracellular carbon and silica content of diatoms from natural assemblages using morphometric techniques. Limnol. Oceanogr. 29 : 1170 – 8.en_US
dc.identifier.citedreferenceSicko-Goad, L., Stoermer, E. F., & Fahnestiel, G. 1986b. Rejuvenation of Melosira granulata (bacillariophyceae) from the anoxic sediments of Douglas Lake, Michigan. I. Light microscopy and 14 C uptake. J. Phycol. 22 : 22 – 8.en_US
dc.identifier.citedreferenceSicko-Goad, L., Stoermer, E. F. & Ladewski, B. G. 1977. A morphometric method for correcting phytoplankton cell volume estimates. Protoplasma 93 : 147 – 63.en_US
dc.identifier.citedreferenceSmith, G. A. Nichols, P. D. & White, D. C. 1986. Fatty acid composition and microbial activity of benthic marine sediment from McMurdo Sound, Antarctica. FEMS Microbiol. Ecol. 38 : 219 – 31.en_US
dc.identifier.citedreferenceSmith, R. E. H. & Geider, R. J. 1985. Kinetics of intracellular carbon allocation in a marine diatom. J. Exp. Mar. Biol. Ecol. 93 : 191 – 210.en_US
dc.identifier.citedreferenceTageeva, S. V., Abdullaev, K. A. & Shivirst, E. M. 1971. Quantitative morphometry of cytoplasmic membranes as exemplified in the lamellar structures of chloroplasts. Doklady Akademii Nauk USSR 199 : 1171 – 3.en_US
dc.identifier.citedreferenceTornabene, T. G. 1981. Formation of hydrocarbons by bacteria and algae. In Bollaender, A., Rabson, R., Pietro, S., Valentine, R. & Wolfe, R. [ Eds. ] Trends in the Biology of Fermentation for Fuels and Chemicals. Plenum, Plenum, pp. 421 – 38.en_US
dc.identifier.citedreferenceVarum, K. M. & Mykelstad, S. 1984. Effects of light, salinity and nutrient limitation on the production of Β-1, 3-D glucan and Exo-D-glucanase activity in Skeletonema costatum (Grev.) Cleve. J. Exp. Mar. Biol. Ecol. 83 : 13 – 25.en_US
dc.identifier.citedreferenceWatson, M. L. 1958. Staining tissue sections for electron microscopy with heavey metals. J. Biophys. Biochem. Cytol. 4 : 475 – 8.en_US
dc.identifier.citedreferenceWerner, D. 1966. Die Kieselsaure im Stoffwechsel von Cyclotella cryptica, Reimann, Lewin & Guillard. Arch. Mikrobiol. 55 : 278 – 308.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.