Show simple item record

Developmental Biology: Frontiers for Clinical Genetics: Limb development: molecular dysmorphology is at hand

dc.contributor.authorInnis, Jeffrey W.en_US
dc.contributor.authorMortlock, Douglas P.en_US
dc.date.accessioned2010-04-01T14:52:42Z
dc.date.available2010-04-01T14:52:42Z
dc.date.issued1998-05en_US
dc.identifier.citationInnis, Jeffrey W; Mortlock, Douglas P (1998). "Developmental Biology: Frontiers for Clinical Genetics: Limb development: molecular dysmorphology is at hand ." Clinical Genetics 53(5): 337-348. <http://hdl.handle.net/2027.42/65332>en_US
dc.identifier.issn0009-9163en_US
dc.identifier.issn1399-0004en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65332
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=9660051&dopt=citationen_US
dc.format.extent6001811 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1998 Blackwell Munksgaarden_US
dc.subject.otherLimb Developmenten_US
dc.subject.otherMolecular Dysmorphologyen_US
dc.subject.otherPattern Organsen_US
dc.titleDevelopmental Biology: Frontiers for Clinical Genetics: Limb development: molecular dysmorphology is at handen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Department of Human Genetics, Ann Arbor, Ml, USAen_US
dc.identifier.pmid9660051en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65332/1/j.1399-0004.1998.tb02744.x.pdf
dc.identifier.doi10.1111/j.1399-0004.1998.tb02744.xen_US
dc.identifier.sourceClinical Geneticsen_US
dc.identifier.citedreferenceCohn MJ, Tickle C. Limbs: a model for pattern formation within the vertebrate body plan. Trends Genet 1996 : 12 : 253 – 257.en_US
dc.identifier.citedreferenceShubin N., Tabin C., Carroll S. Fossils, genes and the evolution of animal limbs. Nature 1997 : 388 : 639 – 648.en_US
dc.identifier.citedreferencePanganiban G., Irvine SM, Lowe C., Roehl H., Corley LS, Sherbon B., Grenier JK, Fallon JF, Kimble J., Walker M., Wray GA, Swalla BJ, Martindale MQ, Carroll SB. The origin and evolution of animal appendages. Proc Natl Acad Sci USA 1997 : 94 : 5162 – 5166.en_US
dc.identifier.citedreferenceNiswander L. Limb mutants: what can they tell us about normal limb development ? Curr Opin Gen Dev 1997 : 7 : 530 – 536.en_US
dc.identifier.citedreferenceJohnson RL, Tabin CJ. Molecular models for vertebrate limb development. Cell 1997 : 90 : 979 – 990.en_US
dc.identifier.citedreferenceWilson GN. Molecular approach to understanding human malformations. In : Human Malformations and Related Anomalies. Oxford : Oxford Monographs on Medical Genetics 1993 ( 27 ): 233.en_US
dc.identifier.citedreferenceTickle C. Genetics and limb development. Dev Genet 1996 : 19 : 1 – 8.en_US
dc.identifier.citedreferenceErlebacher A., Filvaroff EH, Gitelman SE, Derynck R. Toward a molecular understanding of skeletal development. Cell 1995 : 80 : 371 – 378.en_US
dc.identifier.citedreferenceTickle C., Eichele G. Vertebrate limb development. Ann Rev Cell Biol 1994 : 10 : 121 – 152.en_US
dc.identifier.citedreferenceShubin N., Alberch P. A morphogenetic approach to the origin and basic organization of the tetrapod limb. In : Hecht MK, Wallace B., Prance GT eds. EvolutionaryBiology, vol. 20. New York : Plenum, 1986 : 319 – 387.en_US
dc.identifier.citedreferenceSearls RL, Janners MY. The initiation of limb bud outgrowth in the embryonic chick. Dev Biol 1971 : 24 : 198 – 213.en_US
dc.identifier.citedreferenceStratford TH, Kostakopoulou K., Maden M. Hoxb-8 has a role in establishing early anterior-posterior polarity in chick forelimb but not hindlimb. Development 1997 : 124 : 4225 – 4234.en_US
dc.identifier.citedreferenceBurke AC, Nelson CE, Morgan BA, Tabin C. Hox genes and the evolution of vertebrate axial morphology. Development 1995 : 121 : 333 – 346.en_US
dc.identifier.citedreferenceCharite J., de Graaff W., Shen S., Deschamps J. Ectopic expression of Hoxb8 causes duplication of the ZPA in the forelimb and homeotic transformation of axial structures. Cell 1994 : 78 : 589 – 601.en_US
dc.identifier.citedreferenceRancourt DE, Tsuzuki T., Capecchi MR. Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonallelic noncomplementation. Genes Dev 1995 : 9 : 108 – 122.en_US
dc.identifier.citedreferenceStephens TD, McNulty TR. Evidence for a metameric pattern in the development of the chick humerus. J Embryol Exp Morphol 1981 : 61 : 191 – 205.en_US
dc.identifier.citedreferenceSmith DM, Torres RD, Stephens TD. Mesonephros has a role in limb development and is related to thalidomide embryopathy. Teratology 1996 : 54 : 126 – 134.en_US
dc.identifier.citedreferenceFernandez-Teran M., Piedra ME, Simandl BK, Fallon JF, Ros MA. Limb initiation and development is normal in the absence of the mesonephros. Dev Biol 1997 : 189 : 246 – 255.en_US
dc.identifier.citedreferenceGeduspan JS, Solursh M. A growth-promoting influence from the mesonephros during limb outgrowth. Dev Biol 1992 : 151 : 242 – 250.en_US
dc.identifier.citedreferenceOhuchi H., Nakagawa T., Yamamoto A., Araga A., Ohata T., Ishimaru Y., Yoshioka H., Kuwana T., Nohno T., Yamasaki M., Itoh N., Noji S. The mesenchymal factor FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 1997 : 124 : 2235 – 2244.en_US
dc.identifier.citedreferenceAltabef M., Clarke JDW, Tickle C. Dorso-ventral ectodermal compartments and origin of apical ectodermal ridge in developing chick limb. Development 1997 : 124 : 4547 – 4556.en_US
dc.identifier.citedreferenceMichaud JL, Lapointe F., Le Douarin NM. The dorsoventral polarity of the presumptive limb is determined by signals produced by the somites and by the lateral somatopleure. Development 1997 : 124 : 1453 – 1463.en_US
dc.identifier.citedreferenceCrossley PH, Minowada G., MacArthur CA, Martin GR. Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 1996 : 84 : 127 – 136.en_US
dc.identifier.citedreferenceHelms JA, Kim CH, Eichele G., Thaller C. Retinoic acid signaling is required during early chick limb development. Development 1996 : 122 : 1385 – 1394.en_US
dc.identifier.citedreferenceLu H-C, Revelli J-P, Goering L., Thaller C., Eichele G. Retinoid signalling is required for the establishment of a ZPA and for the expression of Hoxb-8, a mediator of ZPA formation. Development 1997 : 124 : 1643 – 1651.en_US
dc.identifier.citedreferenceCohn M., Izpisua-Belmonte JC, Abud H., Heath J., Tickle C. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 1995 : 80 : 739 – 746.en_US
dc.identifier.citedreferenceCarlson BM. Patten Foundations of Embryology. New York : McGraw-Hill, 1988 : 393 – 421.en_US
dc.identifier.citedreferenceBamshad M., Lin RC, Law DJ, Watkins WS, Krakowiak PA, Moore ME, Franceschini P., Lala R., Holmes LB, Gebuhr TC, Bruneau BG, Schinzel A., Seidman JG, Seidman CE, Jorde LB. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet 1997 : 16 : 311 – 315.en_US
dc.identifier.citedreferenceBasson CT, Bachinsky DR, Lin RC, Levi T., Elkins JA, Soults J., Grayzel D., Kroumpouzou E., Traill TA, Lablanc-Straceski J., Renault B., Kucherlapati R., Seidman JG, Seidman CE. Mutations in human TBX5 cause limb and cardiac malformations in Holt-Oram syndrome. Nat Genet 1997 : 15 : 30 – 35.en_US
dc.identifier.citedreferenceLi QY, Newbury-Ecob RA, Terret JA, Wilson DI, Curtis ARJ, Yi CH, Gebuhr T., Bullen PJ, Robson SC, Strachan T., Bonnet D., Lyonnet S., Young ID, Raeburn JA, Buckle AJ, Law DJ, Brook JD. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 1997 : 15 : 21 – 29.en_US
dc.identifier.citedreferenceSmith J. Brachyury and the T-box genes. Curr Opin Gen Dev 1997 : 7 : 474 – 480.en_US
dc.identifier.citedreferenceGibson-Brown JJ, Agulnik SI, Chapman DL, Alexiou M., Garvey N., Silver LM, Papaioannou VE. Evidence of a role for T-box genes in the evolution of limb morphogenesis and the speculation of forelimb/hindlimb identity. Mech Dev 1996 : 56 : 93 – 101.en_US
dc.identifier.citedreferenceOhuchi H., Takeuchi J., Yoshioka H., Ishimaru Y., Ogura K., Takahashi N., Ogura T., Noji S. Correlation of wing-leg identity in ectopic FGF-induced chimeric limbs with the differential expression of chick Tbx5 and Tbx4. Development 1998 : 125 : 51 – 60.en_US
dc.identifier.citedreferenceRodriguez-Esteban C., Schwabe JWR, De La Pena J., Foys B., Eshelman B., Izpisua-Belmonte J-C. Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature 1997 : 386 : 360 – 366.en_US
dc.identifier.citedreferenceLaufer E., Dahn R., Orozco OE, Yeo C-Y, Pisenti J., Henrique D., Abbott UK, Fallon JF, Tabin C. Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 1997 : 386 : 366 – 373.en_US
dc.identifier.citedreferenceGrieshammer U., Minowada G., Pisenti J., Abbott U., Martin GR. The chick limbless mutation causes abnormalities in limb bud dorsal-ventral patterning: implications for the mechanism of apical ridge formation. Development 1996 : 122 : 3851 – 3861.en_US
dc.identifier.citedreferenceSingh G., Supp D., Schreiner C., McNeish J., Merker H-J, Copeland N., Jenkins N., Potter S., Scott W. legless insertional mutation: morphological, molecular, and genetic characterization. Genes Dev 1991 : 5 : 2245 – 2255.en_US
dc.identifier.citedreferenceChan DC, Wynshaw-Boris A., Leder P. Formin isoforms are differentially expressed in the mouse embryo and are required for normal expression of fgf-4 and shh in the limb bud. Development 1995 : 121 : 3151 – 3162.en_US
dc.identifier.citedreferenceZeller R., Jackson-Grusby L., Leder P. The limb deformity gene is required for apical ectodermal ridge differentiation and anteroposterior limb pattern formation. Genes Dev 1989 : 3 : 1481 – 1492.en_US
dc.identifier.citedreferenceFroster-Iskenius UG, Baird PA. Amelia: incidence and associated defects in a large population. Teratology 1990 : 41 : 23 – 31.en_US
dc.identifier.citedreferenceCrackower MA. Scherer SW, Rommens JM, Hui CC, Poorkaj P, Soder S, Cobben JM, Hudgins L, Evans JP, Tsui LC. Characterization of the split hand/split foot malformation locus SHFM1 at 7q21.3-q22.1 and analysis of a candidate gene for its expression during limb development. Hum Mol Genet 1996 : 5 : 571 – 579.en_US
dc.identifier.citedreferenceJohnson KR, Lane PW, Ward-Bailey P., Davisson MT. Mapping the mouse Dactylaplasia mutations. Dac, and a gene that controls its expression, mdac. Genomics 1995 : 29 : 457 – 464.en_US
dc.identifier.citedreferenceSeto ML, Nunes ME, MacArthur CA, Cunningham ML. Pathogenesis of ectrodactyly in the Dactylaplasia mouse: aberrant cell death of the apical ectodermal ridge. Teratology 1997 : 56 : 262 – 270.en_US
dc.identifier.citedreferenceInnis JW. Role of HOX genes in human development. Curr Opin Ped 1997 : 9 : 617 – 622.en_US
dc.identifier.citedreferenceDuboule D., Morata G. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet 1994 : 10 : 358 – 364.en_US
dc.identifier.citedreferenceYokouchi Y., Sasaki H., Kuroiwa A. Homeobox gene expression correlated with the bifurcation process of limb cartilage development. Nature 1991 : 353 : 443 – 446.en_US
dc.identifier.citedreferenceNelson CE, Morgan BA, Burke AC, Laufer E., DiMambro E., Murtaugh LC, GonzaJes E., Tessarollo L., Parada LF, Tabin C. Analysis of Hox gene expression in the chick limb bud. Development 1996 : 122 : 1449 – 1466.en_US
dc.identifier.citedreferenceDavis AP, White DP, Hsieh-Li HM, Potter SS, Capecchi MR. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 1995 : 375 : 791 – 795.en_US
dc.identifier.citedreferenceFromental-Romain C., Warot X., Messadecq N., LeMeur M., DollÉ P., Chambon P. Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development 1996 : 122 : 2997 – 3011.en_US
dc.identifier.citedreferenceDavis AP, Capecchi MR. A mutational analysis of the 5′ HoxD genes: dissection of genetic interactions during limb development in the mouse. Development 1996 : 122 : 1175 – 1185.en_US
dc.identifier.citedreferenceDuboule D. Vertebrate Hox genes and proliferation: an alternative pathway to homeosis ? Curr Biol 1995 : 5 : 525 – 528.en_US
dc.identifier.citedreferenceCapeechi MR. Function of homeobox genes in skeletal development. NY Acad Sci 1996 : 785 : 34 – 37.en_US
dc.identifier.citedreferenceRijli FM, Chambon P. Genetic interactions of Hox genes in limb development: learning from compound mutants. Curr Opin Genet Dev 1997 : 7 : 481 – 487.en_US
dc.identifier.citedreferenceZÁkÁny J., Duboule D. Synpolydactyly in mice with a targeted deficiency in the HoxD complex. Nature 1996 : 384 : 69 – 71.en_US
dc.identifier.citedreferenceGoff DJ, Tabin CJ. Analysis of Hoxd13 and Hoxd11 misexpression in chick limb buds reveals that Hox genes affect both bone condensation and growth. Development 1997 : 124 : 627 – 636.en_US
dc.identifier.citedreferenceAkarsu AN, Stoilov I., Yilmaz E., Sayil BS, Sarfarazi M. Genomic structure of HOXD 13 gene: a nine polyalanine duplication causes synpolydactyly in two unrelated families. Hum Mol Genet 1996 : 5 : 945 – 952.en_US
dc.identifier.citedreferenceMuragaki Y., Mundlos S., Upton J., Olsen BR. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science. 1996 : 272 : 548 – 551.en_US
dc.identifier.citedreferenceGoodman FR, Mundlos S., Muragaki Y., Donnai D., Giovannucci-Uzielli ML, Lapi E., Majewski F., McGaughran J., McKeown C., Reardon W., Upton J., Winter RM, Olsen BR, Scambler PJ. Synpolydactyly phenotypes correlate with size of expansions in HOXD 13 polyalanine tract. Proc Natl Acad Sci USA 1997 : 94 : 7458 – 7463.en_US
dc.identifier.citedreferenceMortlock DP, Innis JW. Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet 1997 : 15 : 179 – 180.en_US
dc.identifier.citedreferencePinsky L. A community of human malformation syndromes involving the MÜllerian ducts, distal extremities, urinary tract, and ears. Teratology 1973 : 9 : 65 – 80.en_US
dc.identifier.citedreferenceHerault Y., Fraudeau N., Zakany J., Duboule D. Ulnaless (Ul), a regulatory mutation inducing both loss-of-function and gain-of-function of posterior Hoxd genes. Development 1997 : 124 : 3493 – 3500.en_US
dc.identifier.citedreferencePeichel CL, Prabhakaran B., Vogt TF. The mouse Ulnaless mutation deregulates posterior HoxD gene expression and alters appendicular patterning. Development 1997 : 124 : 3481 – 3492.en_US
dc.identifier.citedreferenceYokouchi Y., Nakazato S., Yamamoto M., Goto Y., Kameda T., Iba H., Kuroiwa A. Misexpression of Hoxa-13 induces cartilage homeotic transformation and changes cell adhesiveness in chick limb buds. Genes Dev 1995 : 9 : 2509 – 2522.en_US
dc.identifier.citedreferencevan der Hoeven F., Zakany J., Duboule D. Gene transpositions in the HOXD complex reveal a hierarchy of regulatory controls. Cell 1996 : 85 : 1025 – 1035.en_US
dc.identifier.citedreferenceKnezevic V., de Santo R., Schughart K., Huffstadt U., Chiang C., Mahon KA, Mackem S. Hoxd-12 differentially affects preaxial and postaxial chondrogenic branches in the limb and regulates Sonic hedgehog in a positive feedback loop. Development 1997 : 124 : 4523 – 4536.en_US
dc.identifier.citedreferenceRiddle R., Johnson R., Laufer E., Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 1993 : 75 : 1401 – 1416.en_US
dc.identifier.citedreferenceBiesecker L. Strike three for Gli3. Nat Genet 1997 : 15 : 259 – 260.en_US
dc.identifier.citedreferenceVogel A., Rodriguez C., Warnken W., Izpisua-Belmonte J-C. Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature 1995 : 378 : 716 – 720.en_US
dc.identifier.citedreferenceParr BA, McMahon AP. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 1995 : 374 : 350 – 353.en_US
dc.identifier.citedreferenceJohnson RL, Rothman AL, Xie J., Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DRJr, Scott MP. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 1996 : 272 : 1668 – 1671.en_US
dc.identifier.citedreferenceLoomis CA, Harris E., Michaud J., Wurst W., Hanks M., Joyner AL. The mouse Engrailed-1 gene and ventral limb patterning. Nature 1996 : 382 : 360 – 363.en_US
dc.identifier.citedreferenceChiang C., Litingtung Y., Lee E., Young KE, Corden JL, Westphal H., Beachy PA. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996 : 383 : 407 – 413.en_US
dc.identifier.citedreferenceHahn H., Wicking C., Zaphiropoulos PG, Gailani MR, Shanley S., Chidambram A., Vorechovsky I., Holmberg E., Unden AB, Gillies S., Negus K., Smyth I., Pressman C., Leffell DJ, Gerrard B., Goldstein AM, Dean M., Toffgrad R., Chenevix-Trench G., Wainwright B., Bale AE. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996 : 85 : 841 – 851.en_US
dc.identifier.citedreferenceGoodrich LV, Milenkovic L., Higgins KM, Scott MP. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 1997 : 277 : 1109 – 1113.en_US
dc.identifier.citedreferenceTint GS, Irons M., Elias ER, Batta AK, Frieden R., Chen TS, Salen G. Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome. N Engl J Med 1994 : 330 : 107 – 113.en_US
dc.identifier.citedreferenceCunniff C., Kratz LE, Moser A., Natowicz MR, Kelley RI. Clinical and biochemical spectrum of patients with RSH/Smith-Lemli-Opitz syndrome and abnormal cholesterol metabolism. Am J Med Genet 1997 : 68 : 263 – 269.en_US
dc.identifier.citedreference77. OMIM 14882.en_US
dc.identifier.citedreferenceDudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 1995 : 9 : 2795 – 2807.en_US
dc.identifier.citedreferenceLuo G., Hofmann C., Bronckers ALJJ, Sohocki M., Bradley A., Karsenty G. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 1995 : 9 : 2808 – 2820.en_US
dc.identifier.citedreferenceMo R., Freer AM, Zinyk DL, Crackower MA, Michaud J., Heng HH, Chik KW, Shi XM, Tsui LC, Cheng SH, Joyner AL, Hui C. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 1997 : 124 : 113 – 123.en_US
dc.identifier.citedreferenceJohnson DR. Brachyphalangy, an allele of extra-toes in the mouse. Genet Res 1969 : 13 : 275 – 280.en_US
dc.identifier.citedreferencevan der Hoeven F., Schimmang T., Vortkamp A., RÜther U. Molecular linkage of the morphogenetic mutation add and the zinc finger gene Gli3. Mammalian Genome 1993 : 4 : 276 – 277.en_US
dc.identifier.citedreferenceSchimmang T., Oda SI, RÜther U. The mouse mutant Polydactyly Nagoya ( Pdn ) defines a novel allele of the zinc finger gene Gli3. Mammalian Genome 1994 : 5 : 384 – 386.en_US
dc.identifier.citedreferenceWild A., Kalff-Suske M., Vortkamp A., Bomholdt D., Konig R., Grzeschik KH. Point mutations in human GLI3 cause Greig syndrome. Hum Mol Genet 1997 : 6 : 1979 – 1984.en_US
dc.identifier.citedreferenceVortkamp A., Gessler M., Grzeschik KH. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 1991 : 352 : 539 – 540.en_US
dc.identifier.citedreferenceRadhakrishna U., Wild A., Grzeschik KH, Antonarakis SE. Mutation in GLI3 in postaxial polydactyly type A. Nat Genet 1997 : 17 : 269 – 271.en_US
dc.identifier.citedreferenceKang S., Jr JMG, Olney AH, Biesecker LG. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet 1997 : 15 : 266 – 268.en_US
dc.identifier.citedreferenceHui C., Joyner AL. A mouse model of Grieg cephalopolysyndactyly syndrome: the extra-toes (J) mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 1993 : 3 : 241 – 246.en_US
dc.identifier.citedreferenceVortkamp A., Franz T., Gessler M., Grzeschik KH. Deletion of GLI3 supports the homology of the human Greig cephalopolysyndactyly syndrome (GCPS) and the mouse mutant extra toes (Xt). Mammalian Genome 1992 : 3 : 461 – 463.en_US
dc.identifier.citedreferenceMuenke M., Schell U., Hehr A., Robin NH, Losken HW, Schinzel A., Pulleyn LJ, Rutland P., Reardon W., Malcolm S., Winter RM. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat Genet 1994 : 8 : 269 – 274.en_US
dc.identifier.citedreferenceLajeunie E., Ma HW, Bonaventure J., Munnich A., Merrer ML. FGFR2 mutations in Pfeiffer syndrome. Nat Genet 1995 : 9 : 108.en_US
dc.identifier.citedreferenceJabs EW, Li X., Scott AF, Meyers G., Chen W., Eccles M., Mao JI, Charnas LR, Jackson CE, Jaye M. Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nat Genet 1994 : 8 : 275 – 279.en_US
dc.identifier.citedreferenceWilkie AOM, Slaney SF, Oldridge M., Poole MD, Ashworth GJ, Hockley AD, Hayward RD, David DJ, Pulleyn LJ, Rutland P., Malcolm S., Winter RM, Reardon W. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 1995 : 9 : 165 – 172.en_US
dc.identifier.citedreferenceRutland P., Pulleyn LJ, Reardon W., Baraitser M., Hayward R., Jones B., Malcolm S., Winter RM, Oldridge M., Slaney SF, Poole MD, Wilkie AOM. Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nat Genet 1995 : 9 : 173 – 176.en_US
dc.identifier.citedreferenceWoychik RP, Maas RL, Zeller R., Vogt TF, Leder P. Formins: proteins deduced from the alternative transcripts of the limb deformity gene. Nature 1990 : 346 : 850 – 853.en_US
dc.identifier.citedreferenceMaas RL, Zeller R., Woychik RP, Vogt TF, Leder P. Disruption of formin-encoding transcripts in two mutant limb deformity alleles. Nature 1990 : 346 : 853 – 855.en_US
dc.identifier.citedreferenceWurst W., Auerbach AB, Joyner AL. Multiple developmental defects in Engrailed-1 mutant mice: an early midhindbrain deletion and patterning defects in forelimbs and sternum. Development 1994 : 120 : 2065 – 2075.en_US
dc.identifier.citedreferenceFoster JW, Dominguez-Steglich MA, Guioli S., Kowk G., Weller PA, Stevanovic M., Weissenbach J., Mansour S., Young ID, Goodfellow PN, Brook JD, Schafer AJ. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 1994 : 372 : 525 – 530.en_US
dc.identifier.citedreferenceWagner T., Wirth J., Meyer J., Zabel B., Held M., Zimmer J., Pasantes J., Bricarelli FD, Keutel J., Hustert E., Wolf U., Tommerup N., Schempp W., Scherer G. Autosomal sex reversal and camporaelic dysplasia are caused by mutations in and around the SRY -related gene SOX9. Cell 1994 : 79 : 1111 – 1120.en_US
dc.identifier.citedreferenceEl Ghouzzi V., Merrer ML, Perrin-Schmidt F., Lajeunie E., Benit P., Renier D. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet 1997 : 15 : 42 – 46.en_US
dc.identifier.citedreferenceHoward TD, Paznekas WA, Green ED, Chiang LC, Ma N., Luna RIOD, Delgado CG, Gonzalez-Ramos M., Kline AD, Jabs EW. Mutations in TWIST, a basic helix-lopphelix transcription factor, in Saethre-Chotzen syndrome. Nat Genet 1997 : 15 : 36 – 41.en_US
dc.identifier.citedreferenceFawcett D., Pasceri P., Fraser R., Colbert M., Rossant J., GiguÈre V. Postaxial polydactyly in forelimbs of CRABP-1I mutant mice. Development 1995 : 121 : 671 – 679.en_US
dc.identifier.citedreferenceRijli FM, Matyas R., Pellegrini M., Dierich A., Gruss P., DollÉ P., Chambon P. Cryptorchidism and homeotic transformations of spinal nerves and vertebrae in Hoxa10 mutant mice. Proc Natl Acad Sci USA 1995 : 92 : 8185 – 8189.en_US
dc.identifier.citedreferenceSatokata I., Benson G., Maas R. Sexually dimorphic sterility phenotypes in Haxa10 -defieient mice. Nature 1995 : 374 : 460 – 463.en_US
dc.identifier.citedreferenceSmall KM, Potter SS. Homeotic transformations and limb defects in Hoxa11 mutant mice. Genes Dev 1993 : 7 : 2318 – 2328.en_US
dc.identifier.citedreferenceHsieh-Li HM, Witte DP, Weinstein M., Branford W., Li H., Small K., Potter SS. Hoxa11 structure, extensive antisense transcription, and function in male and female fertility. Development 1995 : 121 : 1373 – 1385.en_US
dc.identifier.citedreferenceRobertson KE, Chapman MH, Adams A., Tickle C., Darling SM. Cellular analysis of limb development in the mouse mutant Hypodactyly. Dev Genet 1996 : 19 : 9 – 25.en_US
dc.identifier.citedreferenceMortlock DP, Post LC, Innis JW. The molecular basis of hypodactyly ( Hd ): a deletion in Hoxa13 leads to arrest of digital arch formation. Nat Genet 1996 : 13 : 284 – 289.en_US
dc.identifier.citedreferenceCarpenter E., Goddard JM, Davis AP, Nguyen TP, Capecchi MR. Targeted disruption of Hoxd-10 affects mouse hindlimb development. Development 1997 : 124 : 4505 – 4514.en_US
dc.identifier.citedreferenceFavier B., Meur ML, Chambon P., DollÉ P. Axial skeleton homeosis and forelimb malformations in Hoxd-11 mutant mice. Proc Natl Acad Sci USA 1995 : 92 : 310 – 314.en_US
dc.identifier.citedreferenceDavis AP, Capecchi MR. Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of hoxd-11. Development 1994 : 120 : 2187 – 2198.en_US
dc.identifier.citedreferenceDollÉ P., Dierich A., LeMeur M., Schimmang T., Schuhbaur B., Chambon P., Duboule D. Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell 1993 : 75 : 431 – 441.en_US
dc.identifier.citedreferenceTakagi T., Moribe H., Kondoh H., Higashi Y. EF1. a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development 1998 : 125 : 21 – 31.en_US
dc.identifier.citedreferenceQu S., Niswender KD, Ji Q., Meer RVD, Keeney D., Magnuson MA, Wisdom R. Polydactyly and ectopic ZPA formation in Alx-4 mutant mice. Development 1997 : 124 : 3999 – 4008.en_US
dc.identifier.citedreferenceCobrinik D., Lee MH, Hannon G., Mulligan G., Bronson RT, Dyson N., Harlow E., Beach D., Weinberg RA, Jacks T. Shared role of the pRB-related pl 30 and pl 07 proteins in limb development. Genes Dev 1996 : 10 : 1633 – 1644.en_US
dc.identifier.citedreferenceHoth CF, Milunsky A., Lipsky N., Sheffer R., Clarren SK, Bladwin CT. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Med Genet 1993 : 52 : 455 – 462.en_US
dc.identifier.citedreferenceKohlhase J., Wischermann A., Reichenbach H., Froster U., Engel W. Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 1998 : 18 : 81 – 83.en_US
dc.identifier.citedreferenceStorm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee S. Limb alterations in brachypodism mice due to mutations in a new member of the TGFΒ-superfamily. Nature 1994 : 368 : 639 – 643.en_US
dc.identifier.citedreferenceThomas JT, Kilpatrick MW, Lin K., Erlacher L., Lembessis P., Costa T., Tsipouras P., Luyten FP. Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet 1997 : 17 : 58 – 64.en_US
dc.identifier.citedreferencePolinkovsky A., Robin NH, Thomas JT, Irons M., Lynn A., Goodman FR, Reardon W., Kant SG, Brunner HG, Burgt IVD, Chitayat D., McGaughran J., Donnai D., Luyten FP, Warman ML. Mutations in CDMPl cause autosomal dominant brachydactyly type C. Nat Genet 1997 : 17 : 18 – 19.en_US
dc.identifier.citedreferenceThomas JT, Lin K., Nandedkar M., Camargo M., Cervenka J., Luyten FP. A human chondrodysplasia due to a mutation in a TGF-Β superfamily member. Nat Genet 1996 : 13 : 315 – 317.en_US
dc.identifier.citedreferenceKomori T., Yagi H., Nomura S., Yamaguchi A., Sasaki K., Deguchi K., Shimizu Y., Bronson RT, Gao YH, Inada M., Sato M., Okamoto R., Kitamura Y., Yoshiki S., Kishimoto T. Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997 : 89 : 755 – 764.en_US
dc.identifier.citedreferenceOtto F., Thornell AP, Crompton T., Denzel A., Gilmour KC, Rosewell IR, Stamp GWH, Beddington RSP, Mundlos S., Olsen BR, Selby PB, Owen MJ. Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997 : 89 : 765 – 772.en_US
dc.identifier.citedreferenceMundlos S., Otto F., Mundlos C., Mulliken JB, Aylsworth AS, Albright S., Lindhout D., Cole WG, Henn W., Knoll JHM, Owen MJ, Mertelsmann R., Zabel BU, Olsen BR. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 1997 : 89 : 773 – 780.en_US
dc.identifier.citedreferenceLee B., Thirunavukkarasu K., Zhou L., Pastore L., Baldini A., Hecht J., Geoffroy V., Ducy P., Karsenty G. Missense mutations abolishing DNA binding of the osteoblast-spe cific transcription factor OSF2/CBFA1 in cleiodcranial dypslasia. Nat Genet 1997 : 16 : 307 – 310.en_US
dc.identifier.citedreferenceDucy P., Zhang R., Geoffroy V., Ridall AL, Karsenty G. Osf2/Cbfal : A transcriptional activator of osteoblast differentiation. Cell 1997 : 89 : 747 – 754.en_US
dc.identifier.citedreferenceShiang R., Thompson LM, Zhu YZ, Church DM, Fielder TJ, Bocian M., Winokur ST, Wasmuth JJ. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 1994 : 78 : 335 – 342.en_US
dc.identifier.citedreferenceTavormina PL, Shiang R., Thompson LM, Zhu YZ, Wilkin DJ, Lachman RS, Wilcox WR, Rimoin DL, Cohn DH, Wasmuth JJ. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet 1995 : 9 : 321 – 328.en_US
dc.identifier.citedreferenceDeng C., Wyndshaw-Boris A., Zhou F., Kuo A., Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 1996 : 84 : 911 – 921.en_US
dc.identifier.citedreferencePasteris NG, Cadle A., Logie LJ, Porteous ME, Schwartz CE, Stevenson RE, Glover TW, Wilroy RS, Gorski JL. Isolation and characterization of the faciogenital dysplasia (Aarskog-Scott syndrome) gene: a putative Rho/Rac guanine nucleotide exchange factor. Cell 1994 : 79 : 669 – 678.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.