Show simple item record

Two resting potential levels regulated by the inward-rectifier potassium channel in the guinea-pig spiral modiolar artery

dc.contributor.authorJiang, Zhi-Genen_US
dc.contributor.authorSi, Jun-Qiangen_US
dc.contributor.authorLasarev, Michael R.en_US
dc.contributor.authorNuttall, Alfred L.en_US
dc.date.accessioned2010-04-01T14:55:08Z
dc.date.available2010-04-01T14:55:08Z
dc.date.issued2001-12en_US
dc.identifier.citationJiang, Zhi-Gen; Si, Jun-Qiang; Lasarev, Michael R.; Nuttall, Alfred L. (2001). "Two resting potential levels regulated by the inward-rectifier potassium channel in the guinea-pig spiral modiolar artery." The Journal of Physiology 537(3): 829-842. <http://hdl.handle.net/2027.42/65375>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65375
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11744758&dopt=citationen_US
dc.format.extent382628 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsThe Physiological Society 2001en_US
dc.titleTwo resting potential levels regulated by the inward-rectifier potassium channel in the guinea-pig spiral modiolar arteryen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum§ Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationother* Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97201, USAen_US
dc.contributor.affiliationother† Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97201, USAen_US
dc.contributor.affiliationother† Department of Physiology, Shihezi University Medical College, Xinjiang, People's Republic of Chinaen_US
dc.identifier.pmid11744758en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65375/1/j.1469-7793.2001.00829.x.pdf
dc.identifier.doi10.1111/j.1469-7793.2001.00829.xen_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceBae, Y. M., Park, M. K., Lee, S. H., Ho, W. K. & Earm, Y. E. ( 1999 ). Contribution of Ca 2+ -activated K + channels and non-selective cation channels to membrane potential of pulmonary arterial smooth muscle cells of the rabbit. Journal of Physiology 514, 747 – 758.en_US
dc.identifier.citedreferenceBrown, J. N. & Nuttall, A. L. ( 1994 ). Autoregulation of cochlear blood flow in guinea pigs. American Journal of Physiology 266, H 458 – 467.en_US
dc.identifier.citedreferenceCasella, G. & Berger, R. L. ( 1990 ). Statistical Inference. Wadsworth, Belmont, CA, USA.en_US
dc.identifier.citedreferenceChen, G. F. & Cheung, D. W. ( 1992 ). Characterization of acetylcholine-induced membrane hyperpolarization in endothelial cells. Circulation Research 70, 257 – 263.en_US
dc.identifier.citedreferenceColeman, H. A., Tare, M. & Parkington, H. C. ( 2001 ). K + currents underlying the action of endothelium-derived hyperpolarizing factor in guinea-pig, rat and human blood vessels. Journal of Physiology 531, 359 – 373.en_US
dc.identifier.citedreferenceDietrich, H. H. & Dacey, R. G. Jr ( 1994 ). Effects of extravascular acidification and extravascular alkalinization on constriction and depolarization in rat cerebral arterioles in vitro. Journal of Neurosurgery 81, 437 – 442.en_US
dc.identifier.citedreferenceDoupnik, C. A., Davidson, N. & Lester, H. A. ( 1995 ). The inward rectifier potassium channel family. Current Opinion in Neurobiology 5, 268 – 277.en_US
dc.identifier.citedreferenceEdwards, F. R. & Hirst, G. D. ( 1988 ). Inward rectification in submucosal arterioles of guinea-pig ileum. Journal of Physiology 404, 437 – 454.en_US
dc.identifier.citedreferenceEdwards, F. R., Hirst, G. D. & Silverberg, G. D. ( 1988 ). Inward rectification in rat cerebral arterioles; involvement of potassium ions in autoregulation. Journal of Physiology 404, 455 – 466.en_US
dc.identifier.citedreferenceEdwards, G., Dora, K. A., Gardener, M. J., Garland, C. J. & Weston, A. H. ( 1998 ). K + is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396, 269 – 272.en_US
dc.identifier.citedreferenceEmerson, G. G. & Segal, S. S. ( 2001 ). Electrical activation of endothelium evokes vasodilation and hyperpolarization along hamster feed arteries. American Journal of Physiology 280, H 160 – 167.en_US
dc.identifier.citedreferenceEveritt, B. S. & Hand, D. J. ( 1981 ). Finite Mixture Distributions. Chapman and Hall, London.en_US
dc.identifier.citedreferenceFaraci, F. M. & Sobey, C. G. ( 1998 ). Role of potassium channels in regulation of cerebral vascular tone. Journal of Cerebral Blood Flow and Metabolism 18, 1047 – 1063.en_US
dc.identifier.citedreferenceFeletou, M. & Vanhoutte, P. M. ( 1999 ). The alternative: EDHF. Journal of Molecular and Cellular Cardiology 31, 15 – 22.en_US
dc.identifier.citedreferenceHe, D. S., Jiang, J. X., Taffet, S. M. & Burt, J. M. ( 1999 ). Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proceedings of the National Academy of Sciences of the USA 96, 6495 – 6500.en_US
dc.identifier.citedreferenceHille, B. ( 1992 ). Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA, USA.en_US
dc.identifier.citedreferenceHinojosa-Laborde, C., Frohlich, B. H. & Cowley, A. W. Jr ( 1991 ). Contribution of regional vascular responses to whole body autoregulation in conscious areflexic rats. Hypertension 17, 1078 – 1084.en_US
dc.identifier.citedreferenceHirst, G. D. & Edwards, F. R. ( 1989 ). Sympathetic neuroeffector transmission in arteries and arterioles. Physiological Reviews 69, 546 – 604.en_US
dc.identifier.citedreferenceHirst, G. D. & Neild, T. O. ( 1978 ). An analysis of excitatory junctional potentials recorded from arterioles. Journal of Physiology 280, 87 – 104.en_US
dc.identifier.citedreferenceHirst, G. D. & van Helden, D. F. ( 1982 ). Ionic basis of the resting potential of submucosal arterioles in the ileum of the guinea-pig. Journal of Physiology 333, 53 – 67.en_US
dc.identifier.citedreferenceHultcrantz, E. ( 1988 ). Clinical treatment of vascular inner ear diseases. American Journal of Otolaryngology 9, 317 – 322.en_US
dc.identifier.citedreferenceJiang, Z. G. & North, R. A. ( 1991 ). Membrane properties and synaptic responses of rat striatal neurones in vitro. Journal of Physiology 443, 533 – 553.en_US
dc.identifier.citedreferenceJiang, Z. G. & Nuttall, A. L. ( 2000 a ). Two types of smooth muscle cells in guinea pig cochlea spiral modiolar artery. FASEB Journal Abstracts 14 (addendum), LB9.en_US
dc.identifier.citedreferenceJiang, Z. G. & Nuttall, A. L. ( 2000 b ). Two functional states of the smooth muscle cells in cochlea spiral modiolar artery of guinea pigs. Association for Research in Otolaryngology Midwinter Research Meeting Abstract 23, 202.en_US
dc.identifier.citedreferenceJiang, Z. G., Qiu, J.-H., Ren, T.-Y. & Nuttall, A. L. ( 1999 ). Membrane properties and the excitatory junction potentials in smooth muscle cells of cochlea spiral modiolar artery in guinea pigs. Hearing Research 138, 171 – 180.en_US
dc.identifier.citedreferenceJiang, Z. G., Si, J. Q. & Nuttall, A. L. ( 2001 ). Acetylcholine induces hyperpolarization by opening calcium-activated K + channels via a NO-independent mechanism in guinea pig spiral modiolar artery. Association for Research in Otolaryngology Midwinter Research Meeting Abstract 24, 29 – 30.en_US
dc.identifier.citedreferenceKimura, R. S. ( 1986 ). Animal models of inner ear vascular disturbances. American Journal of Otolaryngology 7, 130 – 139.en_US
dc.identifier.citedreferenceKlieber, H. G. & Daut, J. ( 1994 ). A glibenclamide sensitive potassium conductance in terminal arterioles isolated from guinea pig heart. Cardiovascular Research 28, 823 – 830.en_US
dc.identifier.citedreferenceKnot, H. J. & Nelson, M. T. ( 1995 ). Regulation of membrane potential and diameter by voltage-dependent K + channels in rabbit myogenic cerebral arteries. American Journal of Physiology 269, H 348 – 355.en_US
dc.identifier.citedreferenceKnot, H. J. & Nelson, M. T. ( 1998 ). Regulation of arterial diameter and wall [Ca 2+ ] in cerebral arteries of rat by membrane potential and intravascular pressure. Journal of Physiology 508, 199 – 209.en_US
dc.identifier.citedreferenceKnot, H. J., Zimmermann, P. A. & Nelson, M. T. ( 1996 ). Extracellular K + -induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K + channels. Journal of Physiology 492, 419 – 430.en_US
dc.identifier.citedreferenceNelson, M. T., Patlak, J. B., Worley, J. F. & Standen, N. B. ( 1990 ). Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. American Journal of Physiology 259, C 3 – 18.en_US
dc.identifier.citedreferenceOsol, G. & Halpern, W. ( 1985 ). Myogenic properties of cerebral blood vessels from normotensive and hypertensive rats. American Journal of Physiology 249, H 914 – 921.en_US
dc.identifier.citedreferencePrior, H. M., Yates, M. S. & Beech, D. J. ( 1998 ). Functions of large conductance Ca 2+ -activated (BK Ca ), delayed rectifier (K V ) and background K + channels in the control of membrane potential in rabbit renal arcuate artery. Journal of Physiology 511, 159 – 169.en_US
dc.identifier.citedreferenceQuayle, J. M., Dart, C. & Standen, N. B. ( 1996 ). The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. Journal of Physiology 494, 715 – 726.en_US
dc.identifier.citedreferenceQuayle, J. M., McCarron, J. G., Brayden, J. E. & Nelson, M. T. ( 1993 ). Inward rectifier K + currents in smooth muscle cells from rat resistance-sized cerebral arteries. American Journal of Physiology 265, C 1363 – 1370.en_US
dc.identifier.citedreferenceQuayle, J. M., Nelson, M. T. & Standen, N. B. ( 1997 ). ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiological Reviews 77, 1165 – 1232.en_US
dc.identifier.citedreferenceSandow, S. L. & Hill, C. E. ( 2000 ). Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor-mediated responses. Circulation Research 86, 341 – 346.en_US
dc.identifier.citedreferenceSchubert, R., Serebryakov, V. N., Engel, H. & Hopp, H. H. ( 1996 ). Iloprost activates K Ca channels of vascular smooth muscle cells: role of cAMP-dependent protein kinase. American Journal of Physiology 271, C 1203 – 1211.en_US
dc.identifier.citedreferenceSchuknecht, H. F. & Gacek, M. R. ( 1993 ). Cochlear pathology in presbycusis. Annals of Otology, Rhinology and Laryngology 102, 1 – 16.en_US
dc.identifier.citedreferenceSetoguchi, M., Ohya, Y., Abe, I. & Fujishima, M. ( 1997 ). Stretch-activated whole-cell currents in smooth muscle cells from mesenteric resistance artery of guinea-pig. Journal of Physiology 501, 343 – 353.en_US
dc.identifier.citedreferenceSi, J. Q., Jiang, Z. G. & Nuttall, A. L. ( 2001 ). Nitric oxide activates ATP-sensitive K + channels of the smooth muscle cells in cochlear spiral modiolar artery of guinea pigs. Association for Research in Otolaryngology Midwinter Research Meeting Abstract 24, 29.en_US
dc.identifier.citedreferenceSuvatne, J., Barakat, A. I. & O'Donnell, M. E. ( 2001 ). Flow-induced expression of endothelial Na-K-Cl cotransport: dependence on K + and Cl − channels. American Journal of Physiology - Cell Physiology 280, C 216 – 227.en_US
dc.identifier.citedreferenceSuzuki, T., Ren, T., Nuttall, A. L. & Miller, J. M. ( 1998 ). Age-related changes in cochlear blood flow response to occlusion of anterior inferior cerebellar artery in mice. Annals of Otology, Rhinology and Laryngology 107, 648 – 653.en_US
dc.identifier.citedreferenceTani, H., Saito, D., Kusachi, S., Nakatsu, T., Hina, K., Ueeda, M., Watanabe, H., Haraoka, S. & Tsuji, T. ( 1990 ). Autoregulation by the right coronary artery in dogs with open chests; comparison with the left coronary artery. PflÜgers Archiv 416, 442 – 447.en_US
dc.identifier.citedreferenceWeidelt, T., Boldt, W. & Markwardt, F. ( 1997 ). Acetylcholine-induced K + currents in smooth muscle cells of intact rat small arteries. Journal of Physiology 500, 617 – 630.en_US
dc.identifier.citedreferenceWellman, G. C., Quayle, J. M. & Standen, N. B. ( 1998 ). ATP-sensitive K + channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle. Journal of Physiology 507, 117 – 129.en_US
dc.identifier.citedreferenceWelsh, D. G. & Segal, S. S. ( 1998 ). Endothelial and smooth muscle cell conduction in arterioles controlling blood flow. American Journal of Physiology 274, H 178 – 186.en_US
dc.identifier.citedreferenceYamamoto, Y., Fukuta, H., Nakahira, Y. & Suzuki, H. ( 1998 ). Blockade by 18Β-glycyrrhetinic acid of intercellular electrical coupling in guinea-pig arterioles. Journal of Physiology 511, 501 – 508.en_US
dc.identifier.citedreferenceZhang, H., Inazu, M., Weir, B. & Daniel, E. ( 1994 ). Endothelin-1 inhibits inward rectifier potassium channels and activates nonspecific cation channels in cultured endothelial cells. Pharmacology 49, 11 – 22.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.