Show simple item record

Muscarinic receptor regulation of osmosensitive taurine transport in human SH-SY5Y neuroblastoma cells

dc.contributor.authorFoster, Daniel J.en_US
dc.contributor.authorVitvitsky, Victor M.en_US
dc.contributor.authorBanerjee, Rumaen_US
dc.contributor.authorHeacock, Anne M.en_US
dc.contributor.authorFisher, Stephen K.en_US
dc.date.accessioned2010-04-01T14:56:06Z
dc.date.available2010-04-01T14:56:06Z
dc.date.issued2009-01en_US
dc.identifier.citationFoster, Daniel J.; Vitvitsky, Victor M.; Banerjee, Ruma; Heacock, Anne M.; Fisher, Stephen K. (2009). "Muscarinic receptor regulation of osmosensitive taurine transport in human SH-SY5Y neuroblastoma cells." Journal of Neurochemistry 108(2): 437-449. <http://hdl.handle.net/2027.42/65392>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65392
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19012745&dopt=citationen_US
dc.format.extent515455 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 International Society for Neurochemistryen_US
dc.subject.otherHyponatremiaen_US
dc.subject.otherMuscarinic Cholinergic Receptoren_US
dc.subject.otherOrganic Osmolytesen_US
dc.subject.otherTaurine Transporteren_US
dc.subject.otherVolume Regulationen_US
dc.subject.otherVolume-sensitive Organic Osmolyte and Anion Channelen_US
dc.titleMuscarinic receptor regulation of osmosensitive taurine transport in human SH-SY5Y neuroblastoma cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationum† Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationum† Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.identifier.pmid19012745en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65392/1/j.1471-4159.2008.05773.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2008.05773.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAlvarez M. P., Jimenez V., Cano P., Rebollar P., Cardinali D. P. and Esquifino A. I. ( 2006 ) Circadian rhythms of prolactin secretion in neonatal female rabbits after acute separation from their mothers. Gen. Comp. Endocrinol. 146, 257 – 264.en_US
dc.identifier.citedreferenceBeetsch J. W. and Olson J. E. ( 1993 ) Taurine transport in rat astrocytes adapted to hyperosmotic conditions. Brain Res. 613, 10 – 15.en_US
dc.identifier.citedreferenceBest L., Yates A. P., Decher N., Steinmeyer K. and Nilius B. ( 2004 ) Inhibition of glucose-induced electrical activity in rat pancreatic beta cells by DCPIB, a selective inhibitor of volume-sensitive anion currents. Eur. J. Pharmacol. 489, 13 – 19.en_US
dc.identifier.citedreferenceBhardwaj A. ( 2006 ) Neurological impact of vasopressin dysregulation and hyponatremia. Ann. Neurol. 59, 229 – 236.en_US
dc.identifier.citedreferenceCanevari L., Vieira R., Aldegunde M. and Dagani F. ( 1992 ) High-performance liquid chromatographic separation with electrochemical detection of amino acids focusing on neurochemical application. Anal. Biochem. 205, 137 – 142.en_US
dc.identifier.citedreferenceCheema T. A., Ward C. E. and Fisher S. K. ( 2005 ) Subnanomolar concentrations of thrombin enhance the volume-sensitive efflux of taurine from human 1321N1 astrocytoma cells. J. Pharmacol. Exp. Ther. 315, 755 – 763.en_US
dc.identifier.citedreferenceCheema T. A., Pettigrew V. A. and Fisher S. K. ( 2007 ) Receptor regulation of the volume-sensitive efflux of taurine and iodide from human SH-SY5Y neuroblastoma cells: differential requirements for Ca(2+) and protein kinase C. J. Pharmacol. Exp. Ther. 320, 1068 – 1077.en_US
dc.identifier.citedreferenceDecher T., Lang H. J., Nilius B., Bruggemann A., Busch A. E. and Steinmeyer K. ( 2001 ) DCPIB is a novel selective blocker of I(Cl,swell) and prevents swelling-induced shortening of guinea-pig atrial action potential duration. Br. J. Pharmacol. 134, 1467 – 1479.en_US
dc.identifier.citedreferenceFisher S. K., Cheema T. A., Foster D. J. and Heacock A. M. ( 2008 ) Volume-dependent osmolyte efflux from neural tissues: regulation by G-protein-coupled receptors. J. Neurochem. 106, 1998 – 2014.en_US
dc.identifier.citedreferenceFoster D. J., Heacock A. M., Keep R. F. and Fisher S. K. ( 2008 ) Activation of muscarinic cholinergic receptors on human SH-SY5Y neuroblastoma cells enhances both the influx and efflux of K + under conditions of hypo-osmolarity. J. Pharmacol. Exp. Ther. 325, 457 – 465.en_US
dc.identifier.citedreferenceFranco R., Panayiotidis M. I., Ochoa de la Paz L. D. ( 2008 ) Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors. J. Cell. Physiol. 216, 14 – 28.en_US
dc.identifier.citedreferenceHan X., Patters A. B., Jones D. P., Zelikovic I. and Chesney R. W. ( 2006 ) The taurine transporter: mechanisms of regulation. Acta Physiol. 187, 61 – 73.en_US
dc.identifier.citedreferenceHaussinger D., Laubenberger J., vom Dahl S., Ernst T., Bayer S., Langer M., Gerok W. and Hennig J. ( 1994 ) Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107, 1475 – 1480.en_US
dc.identifier.citedreferenceHeacock A. M., Kerley D., Gurda G. T., VanTroostenberghe A. T. and Fisher S. K. ( 2004 ) Potentiation of the osmosensitive release of taurine and d-aspartate from SH-SY5Y neuroblastoma cells after activation of M3 muscarinic cholinergic receptors. J. Pharmacol. Exp. Ther. 311, 1097 – 1104.en_US
dc.identifier.citedreferenceHeacock A. M., Dodd M. S. and Fisher S. K. ( 2006 ) Regulation of volume-sensitive osmolyte efflux from human SH-SY5Y neuroblastoma cells following activation of lysophospholipid receptors. J. Pharmacol. Exp. Ther. 317, 685 – 693.en_US
dc.identifier.citedreferenceHolopainen I., Malminen O. and Kontro P. ( 1987 ) Sodium-dependent high-affinity uptake of taurine in cultured cerebellar granule cells and astrocytes. J. Neurosci. Res. 18, 479 – 483.en_US
dc.identifier.citedreferenceHuxtable R. J. ( 1992 ) Physiological actions of taurine. Physiol. Rev. 72, 101 – 163.en_US
dc.identifier.citedreferenceLambert I. H. ( 2004 ) Regulation of the cellular content of the organic osmolyte taurine in mammalian cells. Neurochem. Res. 29, 27 – 63.en_US
dc.identifier.citedreferenceLien Y. H. and Shapiro J. I. ( 2007 ) Hyponatremia: clinical diagnosis and management. Am. J. Med. 120, 653 – 658.en_US
dc.identifier.citedreferenceLien Y. H., Shapiro J. I. and Chan L. ( 1991 ) Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis. J. Clin. Invest. 88, 303 – 309.en_US
dc.identifier.citedreferenceLiu Q. R., Lopez-Corcuera B., Nelson H., Mandiyan S. and Nelson N. ( 1992 ) Cloning and expression of a cDNA encoding the transporter of taurine and beta-alanine in mouse brain. Proc. Natl Acad. Sci. USA 89, 12145 – 12149.en_US
dc.identifier.citedreferenceMassieu L., Montiel T., Robles G. and Quesada O. ( 2004 ) Brain amino acids during hyponatremia in vivo: clinical observations and experimental studies. Neurochem. Res. 29, 73 – 81.en_US
dc.identifier.citedreferenceMcIlwain H. and Bachelard H. ( 1971 ) Biochemistry and the Central Nervous System, p. 172. Churchill Livingstone, Edinburgh and London.en_US
dc.identifier.citedreferenceMcManus M. L., Churchwell K. B. and Strange K. ( 1995 ) Regulation of cell volume in health and disease. N. Engl. J. Med. 333, 1260 – 1266.en_US
dc.identifier.citedreferenceMiller T. J., Hanson R. D. and Yancey P. H. ( 2000 ) Developmental changes in organic osmolytes in prenatal and postnatal rat tissues. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 125, 45 – 56.en_US
dc.identifier.citedreferenceOkada Y. ( 2006 ) Cell volume-sensitive chloride channels: phenotypic properties and molecular identity. Contrib. Nephrol. 152, 9 – 24.en_US
dc.identifier.citedreferenceOlson J. E. ( 1999 ) Osmolyte contents of cultured astrocytes grown in hypoosmotic medium. Biochim. Biophys. Acta 1453, 175 – 179.en_US
dc.identifier.citedreferenceOlson J. E. and Martinho E. ( 2006a ) Regulation of taurine transport in rat hippocampal neurons by hypo-osmotic swelling. J. Neurochem. 96, 1375 – 1389.en_US
dc.identifier.citedreferenceOlson J. E. and Martinho E. ( 2006b ) Taurine transporter regulation in hippocampal neurons. Adv. Exp. Med. Biol. 583, 307 – 314.en_US
dc.identifier.citedreferencePasantes-Morales H., Franco R., Ordaz B. and Ochoa L. D. ( 2002 ) Mechanisms counteracting swelling in brain cells during hyponatremia. Arch. Med. Res. 33, 237 – 244.en_US
dc.identifier.citedreferencePow D. V., Sullivan R., Reye P. and Hermanussen S. ( 2002 ) Localization of taurine transporters, taurine, and 3 H taurine accumulation in the rat retina, pituitary, and brain. Glia 37, 153 – 168.en_US
dc.identifier.citedreferenceSanchez-Olea R., Moran J., Schousboe A. and Pasantes-Morales H. ( 1991 ) Hyposmolarity-activated fluxes of taurine in astrocytes are mediated by diffusion. Neurosci. Lett. 130, 233 – 236.en_US
dc.identifier.citedreferenceSchousboe A., Fosmark H. and Svenneby G. ( 1976 ) Taurine uptake in astrocytes cultured from dissociated mouse brain hemispheres. Brain Res. 116, 158 – 164.en_US
dc.identifier.citedreferenceSchousboe A., Sanchez Olea R., Moran J. and Pasantes-Morales H. ( 1991 ) Hyposmolarity-induced taurine release in cerebellar granule cells is associated with diffusion and not with high-affinity transport. J. Neurosci. Res. 30, 661 – 665.en_US
dc.identifier.citedreferenceShennan D. B. ( 2008 ) Swelling-induced taurine transport: relationship with chloride channels, anion-exchangers and other swelling-activated transport pathways. Cell Physiol. Biochem. 21, 15 – 28.en_US
dc.identifier.citedreferenceSmith K. E., Borden L. A., Wang C.-H. D., Hartig P. R., Branchek T. A. and Weinshank R. L. ( 1992 ) Cloning and expression of a high affinity taurine transporter from rat brain. Mol. Pharmacol. 42, 563 – 569.en_US
dc.identifier.citedreferenceTuz K. and Pasantes-Morales H. ( 2005 ) Hypoosmolarity evokes norepinephrine efflux from synaptosomes via a depolarization and Ca 2+ -dependent exocytotic mechanism. Eur. J. Neurosci. 22, 1636 – 1642.en_US
dc.identifier.citedreferenceTuz K., Pena-Segura C., Franco R. and Pasantes-Morales H. ( 2004 ) Depolarization, exocytosis and amino acid release evoked by hypoosmolarity from cortical synaptosomes. Eur. J. Neurosci. 19, 916 – 924.en_US
dc.identifier.citedreferenceVazquez-Juarez E., Ramos-Mandujano G., Hernandez-Benitez R. and Pasantes-Morales H. ( 2008 ) On the role of G-protein coupled receptors in cell volume regulation. Cell Physiol. Biochem. 21, 1 – 14.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.