Show simple item record

Proteasomes remain intact, but show early focal alteration in their composition in a mouse model of amyotrophic lateral sclerosis

dc.contributor.authorKabashi, Edoren_US
dc.contributor.authorAgar, Jeffrey N.en_US
dc.contributor.authorHong, Yuen_US
dc.contributor.authorTaylor, David M.en_US
dc.contributor.authorMinotti, Sandraen_US
dc.contributor.authorFiglewicz, Denise A.en_US
dc.contributor.authorDurham, Heather D.en_US
dc.date.accessioned2010-04-01T14:58:51Z
dc.date.available2010-04-01T14:58:51Z
dc.date.issued2008-06en_US
dc.identifier.citationKabashi, Edor; Agar, Jeffrey N.; Hong, Yu; Taylor, David M.; Minotti, Sandra; Figlewicz, Denise A.; Durham, Heather D. (2008). "Proteasomes remain intact, but show early focal alteration in their composition in a mouse model of amyotrophic lateral sclerosis." Journal of Neurochemistry 105(6): 2353-2366. <http://hdl.handle.net/2027.42/65439>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65439
dc.format.extent151855 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 International Society for Neurochemistryen_US
dc.subject.otherCu/Zn-superoxide Dismutaseen_US
dc.subject.otherCu/Zn-superoxide Dismutase 1en_US
dc.subject.otherMotor Neuron Diseaseen_US
dc.subject.otherProtein Aggregationen_US
dc.subject.otherProteolysisen_US
dc.subject.otherUbiquitin-proteasome Pathwayen_US
dc.titleProteasomes remain intact, but show early focal alteration in their composition in a mouse model of amyotrophic lateral sclerosisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother* Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canadaen_US
dc.identifier.pmid18315558en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65439/1/JNC_5317_sm_Figure_3.pdf
dc.identifier.doi10.1111/j.1471-4159.2008.05317.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAlexianu M. E., Kozovska M. and Appel S. H. ( 2001 ) Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 57, 1282 – 1289.en_US
dc.identifier.citedreferenceBasso M., Massignan T., Samengo G., Cheroni C., De Biasi S., Salmona M., Bendotti C. and Bonetto V. ( 2006 ) Insoluble mutant SOD1 is partly oligoubiquitinated in amyotrophic lateral sclerosis mice. J. Biol. Chem. 281, 33325 – 33335.en_US
dc.identifier.citedreferenceBatulan Z., Shinder G. A., Minotti S., He B. P., Doroudchi M. M., Nalbantoglu J., Strong M. J. and Durham H. D. ( 2003 ) High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J. Neurosci. 23, 5789 – 5798.en_US
dc.identifier.citedreferenceBaumeister W., Walz J., Zuhl F. and SeemÜller E. ( 1998 ) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367 – 380.en_US
dc.identifier.citedreferenceBence N. F., Sampat R. M. and Kopito R. R. ( 2001 ) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552 – 1555.en_US
dc.identifier.citedreferenceBennett E. J., Bence N. F., Jayakumar R. and Kopito R. R. ( 2005 ) Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol. Cell 17, 351 – 365.en_US
dc.identifier.citedreferenceBoillee S., Yamanaka K., Lobsiger C. S., Copeland N. G., Jenkins N. A., Kassiotis G., Kollias G. and Cleveland D. W. ( 2006 ) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389 – 1392.en_US
dc.identifier.citedreferenceBruijn L. I., Becher M. W., Lee M. K. et al. ( 1997 ) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327 – 338.en_US
dc.identifier.citedreferenceBruijn L. I., Miller T. M. and Cleveland D. W. ( 2004 ) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 27, 723 – 749.en_US
dc.identifier.citedreferenceBulteau A. L., Petropoulos I. and Friguet B. ( 2000 ) Age-related alterations of proteasome structure and function in aging epidermis. Exp. Gerontol. 35, 767 – 777.en_US
dc.identifier.citedreferenceBulteau A. L., Lundberg K. C., Humphries K. M., Sadek H. A., Szweda P. A., Friguet B. and Szweda L. I. ( 2001 ) Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. J. Biol. Chem. 276, 30057 – 30063.en_US
dc.identifier.citedreferenceCamacho-Carvajal M. M., Wollscheid B., Aebersold R., Steimle V. and Schamel W. W. ( 2004 ) Two-dimensional blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: a proteomics approach. Mol. Cell Proteomics 3, 176 – 182.en_US
dc.identifier.citedreferenceCarrard G., Dieu M., Raes M., Toussaint O. and Friguet B. ( 2003 ) Impact of ageing on proteasome structure and function in human lymphocytes. Int. J. Biochem. Cell Biol. 35, 728 – 739.en_US
dc.identifier.citedreferenceCheroni C., Peviani M., Cascio P., Debiasi S., Monti C. and Bendotti C. ( 2005 ) Accumulation of human SOD1 and ubiquitinated deposits in the spinal cord of SOD1G93A mice during motor neuron disease progression correlates with a decrease of proteasome. Neurobiol. Dis. 18, 509 – 522.en_US
dc.identifier.citedreferenceChiu A. Y., Zhai P., Dal Canto M. C., Peters T. M., Kwon Y. W., Prattis S. M. and Gurney M. E. ( 1995 ) Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. Mol. Cell. Neurosci. 6, 349 – 362.en_US
dc.identifier.citedreferenceChondrogianni N., Stratford F. L., Trougakos I. P., Friguet B., Rivett A. J. and Gonos E. S. ( 2003 ) Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J. Biol. Chem. 278, 28026 – 28037.en_US
dc.identifier.citedreferenceChondrogianni N., Tzavelas C., Pemberton A. J., Nezis I. P., Rivett A. J. and Gonos E. S. ( 2005 ) Overexpression of proteasome beta5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J. Biol. Chem. 280, 11840 – 11850.en_US
dc.identifier.citedreferenceCiechanover A. ( 2005 ) N-terminal ubiquitination. Methods Mol. Biol. 301, 255 – 270.en_US
dc.identifier.citedreferenceCiechanover A. and Brundin P. ( 2003 ) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427 – 446.en_US
dc.identifier.citedreferenceCleveland D. W. and Rothstein J. D. ( 2001 ) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806 – 819.en_US
dc.identifier.citedreferenceDal Canto M. C. and Gurney M. E. ( 1995 ) Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 676, 25 – 40.en_US
dc.identifier.citedreferenceDantuma N. P., Lindsten K., Glas R., Jellne M. and Masucci M. G. ( 2000 ) Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat. Biotechnol. 18, 538 – 543.en_US
dc.identifier.citedreferenceDeMartino G. N. and Slaughter C. A. ( 1999 ) The proteasome, a novel protease regulated by multiple mechanisms. J. Biol. Chem. 274, 22123 – 22126.en_US
dc.identifier.citedreferenceDi Giorgio F. P., Carrasco M. A., Siao M. C., Maniatis T. and Eggan K. ( 2007 ) Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci. 10, 608 – 614.en_US
dc.identifier.citedreferenceDi Noto L., Whitson L. J., Cao X., Hart P. J. and Levine R. L. ( 2005 ) Proteasomal degradation of mutant superoxide dismutases linked to amyotrophic lateral sclerosis. J. Biol. Chem. 280, 39907 – 39913.en_US
dc.identifier.citedreferenceDurham H. D., Roy J., Dong L. and Figlewicz D. A. ( 1997 ) Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J. Neuropathol. Exp. Neurol. 56, 523 – 530.en_US
dc.identifier.citedreferenceElsasser S., Schmidt M. and Finley D. ( 2005 ) Characterization of the proteasome using native gel electrophoresis. Methods Enzymol. 398, 353 – 363.en_US
dc.identifier.citedreferenceFarout L., Mary J., Vinh J., Szweda L. I. and Friguet B. ( 2006 ) Inactivation of the proteasome by 4-hydroxy-2-nonenal is site specific and dependant on 20S proteasome subtypes. Arch. Biochem. Biophys. 453, 435 – 442.en_US
dc.identifier.citedreferenceFurukawa Y. and O’Halloran T. V. ( 2005 ) Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation. J. Biol. Chem. 280, 17266 – 17274.en_US
dc.identifier.citedreferenceGaczynska M., Rock K. L., Spies T. and Goldberg A. L. ( 1994 ) Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complex-encoded genes for LMP2 and LMP7. Proc. Natl Acad. Sci. USA 91, 9213 – 9217.en_US
dc.identifier.citedreferenceGroettrup M., Khan S., Schwarz K. and Schmidtke G. ( 2001 ) Interferon-gamma inducible exchanges of 20S proteasome active site subunits: why? Biochimie 83, 367 – 372.en_US
dc.identifier.citedreferenceGrune T., Jung T., Merker K. and Davies K. J. ( 2004 ) Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int. J. Biochem. Cell Biol. 36, 2519 – 2530.en_US
dc.identifier.citedreferenceHall E. D., Oostveen J. A. and Gurney M. E. ( 1998 ) Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia 23, 249 – 256.en_US
dc.identifier.citedreferenceHart P. J. ( 2006 ) Pathogenic superoxide dismutase structure, folding, aggregation and turnover. Curr. Opin. Chem. Biol. 10, 131 – 138.en_US
dc.identifier.citedreferenceHoffman E. K., Wilcox H. M., Scott R. W. and Siman R. ( 1996 ) Proteasome inhibition enhances the stability of mouse Cu/Zn superoxide dismutase with mutations linked to familial amyotrophic lateral sclerosis. J. Neurol. Sci. 139, 15 – 20.en_US
dc.identifier.citedreferenceJohnston J. A., Dalton M. J., Gurney M. E. and Kopito R. R. ( 2000 ) Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 97, 12571 – 12576.en_US
dc.identifier.citedreferenceKabashi E. and Durham H. D. ( 2006 ) Failure of protein quality control in amyotrophic lateral sclerosis. Biochim. Biophys. Acta 1762, 1038 – 1050.en_US
dc.identifier.citedreferenceKabashi E., Agar J. N., Taylor D. M., Minotti S. and Durham H. D. ( 2004 ) Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J. Neurochem. 89, 1325 – 1335.en_US
dc.identifier.citedreferenceKato S., Horiuchi S., Liu J. et al. ( 2000 ) Advanced glycation endproduct-modified superoxide dismutase-1 (SOD1)-positive inclusions are common to familial amyotrophic lateral sclerosis patients with SOD1 gene mutations and transgenic mice expressing human SOD1 with a G85R mutation. Acta Neuropathol. (Berl.) 100, 490 – 505.en_US
dc.identifier.citedreferenceKeller J. N., Huang F. F. and Markesbery W. R. ( 2000 ) Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98, 149 – 156.en_US
dc.identifier.citedreferenceKriz J., Nguyen M. D. and Julien J. P. ( 2002 ) Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 10, 268 – 278.en_US
dc.identifier.citedreferenceLi L., Zhang X. and Le W. ( 2008 ) Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy 4, 290 – 293.en_US
dc.identifier.citedreferenceMatsumoto G., Stojanovic A., Holmberg C. I., Kim S. and Morimoto R. I. ( 2005 ) Structural properties and neuronal toxicity of amyotrophic lateral sclerosis-associated Cu/Zn superoxide dismutase 1 aggregates. J. Cell Biol. 171, 75 – 85.en_US
dc.identifier.citedreferenceMiyazaki K., Fujita T., Ozaki T. et al. ( 2004 ) NEDL1, a novel ubiquitin-protein isopeptide ligase for dishevelled-1, targets mutant superoxide dismutase-1. J. Biol. Chem. 279, 11327 – 11335.en_US
dc.identifier.citedreferenceMorimoto N., Nagai M., Ohta Y. et al. ( 2007 ) Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res. 1167, 112 – 117.en_US
dc.identifier.citedreferenceNagai M., Re D. B., Nagata T., Chalazonitis A., Jessell T. M., Wichterle H. and Przedborski S. ( 2007 ) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10, 615 – 622.en_US
dc.identifier.citedreferenceNiwa J., Ishigaki S., Hishikawa N., Yamamoto M., Doyu M., Murata S., Tanaka K., Taniguchi N. and Sobue G. ( 2002 ) Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity. J. Biol. Chem. 277, 36793 – 36798.en_US
dc.identifier.citedreferencePedersen W. A., Fu W., Keller J. N., Markesbery W. R., Appel S., Smith R. G., Kasarskis E. and Mattson M. P. ( 1998 ) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol. 44, 819 – 824.en_US
dc.identifier.citedreferencePerluigi M., Fai Poon H., Hensley K., Pierce W. M., Klein J. B., Calabrese V., De Marco C. and Butterfield D. A. ( 2005 ) Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice – a model of familial amyotrophic lateral sclerosis. Free Radic. Biol. Med. 38, 960 – 968.en_US
dc.identifier.citedreferencePoon H. F., Hensley K., Thongboonkerd V., Merchant M. L., Lynn B. C., Pierce W. M., Klein J. B., Calabrese V. and Butterfield D. A. ( 2005 ) Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice – a model of familial amyotrophic lateral sclerosis. Free Radic. Biol. Med. 39, 453 – 462.en_US
dc.identifier.citedreferencePuttaparthi K. and Elliott J. L. ( 2005 ) Non-neuronal induction of immunoproteasome subunits in an ALS model: possible mediation by cytokines. Exp. Neurol. 196, 441 – 451.en_US
dc.identifier.citedreferencePuttaparthi K., Wojcik C., Rajendran B., DeMartino G. N. and Elliott J. L. ( 2003 ) Aggregate formation in the spinal cord of mutant SOD1 transgenic mice is reversible and mediated by proteasomes. J. Neurochem. 87, 851 – 860.en_US
dc.identifier.citedreferenceRosen D. R., Siddique T., Patterson D. et al. ( 1993 ) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59 – 62.en_US
dc.identifier.citedreferenceRubinsztein D. C. ( 2006 ) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780 – 786.en_US
dc.identifier.citedreferenceShaw B. F. and Valentine J. S. ( 2007 ) How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends Biochem. Sci. 32, 78 – 85.en_US
dc.identifier.citedreferenceShinder G. A., Lacourse M. C., Minotti S. and Durham H. D. ( 2001 ) Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J. Biol. Chem. 276, 12791 – 12796.en_US
dc.identifier.citedreferenceTaylor D. M., Gibbs B. F., Kabashi E., Minotti S., Durham H. D. and Agar J. N. ( 2007 ) Tryptophan 32 potentiates aggregation and cytotoxicity of a copper/zinc superoxide dismutase mutant associated with familial amyotrophic lateral sclerosis. J. Biol. Chem. 282, 16329 – 16335.en_US
dc.identifier.citedreferenceUrushitani M., Kurisu J., Tsukita K. and Takahashi R. ( 2002 ) Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J. Neurochem. 83, 1030 – 1042.en_US
dc.identifier.citedreferenceUrushitani M., Kurisu J., Tateno M., Hatakeyama S., Nakayama K., Kato S. and Takahashi R. ( 2004 ) CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J. Neurochem. 90, 231 – 244.en_US
dc.identifier.citedreferenceVargas M. R., Pehar M., Cassina P., Beckman J. S. and Barbeito L. ( 2006 ) Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75NTR-dependent motor neuron apoptosis. J. Neurochem. 97, 687 – 696.en_US
dc.identifier.citedreferenceWang J., Xu G. and Borchelt D. R. ( 2002 ) High molecular weight complexes of mutant superoxide dismutase 1: age-dependent and tissue-specific accumulation. Neurobiol. Dis. 9, 139 – 148.en_US
dc.identifier.citedreferenceWang J., Xu G., Slunt H. H., Gonzales V., Coonfield M., Fromholt D., Copeland N. G., Jenkins N. A. and Borchelt D. R. ( 2005 ) Coincident thresholds of mutant protein for paralytic disease and protein aggregation caused by restrictively expressed superoxide dismutase cDNA. Neurobiol. Dis. 20, 943 – 952.en_US
dc.identifier.citedreferenceWatanabe M., Dykes-Hoberg M., Culotta V. C., Price D. L., Wong P. C. and Rothstein J. D. ( 2001 ) Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol. Dis. 8, 933 – 941.en_US
dc.identifier.citedreferenceZetterstrom P., Stewart H. G., Bergemalm D., Jonsson P. A., Graffmo K. S., Andersen P. M., Brannstrom T., Oliveberg M. and Marklund S. L. ( 2007 ) Soluble misfolded subfractions of mutant superoxide dismutase-1s are enriched in spinal cords throughout life in murine ALS models. Proc. Natl Acad. Sci. USA 104, 14157 – 14162.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.