Show simple item record

Molecular Mechanism of the Constitutive Activation of the L250Q Human Melanocortin-4 Receptor Polymorphism †

dc.contributor.authorProneth, Bettinaen_US
dc.contributor.authorXiang, Zhiminen_US
dc.contributor.authorPogozheva, Irina D.en_US
dc.contributor.authorLitherland, Sally A.en_US
dc.contributor.authorGorbatyuk, Oleg S.en_US
dc.contributor.authorShaw, Amanda M.en_US
dc.contributor.authorMillard, William J.en_US
dc.contributor.authorMosberg, Henry I.en_US
dc.contributor.authorHaskell-Luevano, Carrieen_US
dc.date.accessioned2010-04-01T15:00:38Z
dc.date.available2010-04-01T15:00:38Z
dc.date.issued2006-03en_US
dc.identifier.citationProneth, Bettina; Xiang, Zhimin; Pogozheva, Irina D.; Litherland, Sally A.; Gorbatyuk, Oleg S.; Shaw, Amanda M.; Millard, William J.; Mosberg, Henry I.; Haskell-Luevano, Carrie (2006). "Molecular Mechanism of the Constitutive Activation of the L250Q Human Melanocortin-4 Receptor Polymorphism † ." Chemical Biology & Drug Design 67(3): 215-229. <http://hdl.handle.net/2027.42/65471>en_US
dc.identifier.issn1747-0277en_US
dc.identifier.issn1747-0285en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65471
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16611215&dopt=citationen_US
dc.format.extent981879 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2006 The Authors Journal compilation 2006 Blackwell Munksgaarden_US
dc.subject.otherAgouti-related Proteinen_US
dc.subject.otherConstitutive Activationen_US
dc.subject.otherG-protein Coupled Receptoren_US
dc.subject.otherMelanotropinen_US
dc.subject.otherObesityen_US
dc.subject.otherAGRPen_US
dc.subject.otherPOMCen_US
dc.titleMolecular Mechanism of the Constitutive Activation of the L250Q Human Melanocortin-4 Receptor Polymorphism †en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Medicinal Chemistry, University of Florida, PO Box 100485, Gainesville, FL 32610-0485, USAen_US
dc.contributor.affiliationotherDepartment of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USAen_US
dc.contributor.affiliationotherDepartment of Pharmacodynamics, University of Florida, Gainesville, FL 32610, USAen_US
dc.identifier.pmid16611215en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65471/1/j.1747-0285.2006.00362.x.pdf
dc.identifier.doi10.1111/j.1747-0285.2006.00362.xen_US
dc.identifier.sourceChemical Biology & Drug Designen_US
dc.identifier.citedreferenceChhajlani V., Wikberg J.E. ( 1992 ) Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett ; 309 : 417 – 420.en_US
dc.identifier.citedreferenceMountjoy K.G., Robbins L.S., Mortrud M.T., Cone R.D. ( 1992 ) The cloning of a family of genes that encode the melanocortin receptors. Science ; 257 : 1248 – 1251.en_US
dc.identifier.citedreferenceMountjoy K.G., Mortrud M.T., Low M.J., Simerly R.B., Cone R.D. ( 1994 ) Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol ; 8 : 1298 – 1308.en_US
dc.identifier.citedreferenceRoselli-Rehfuss L., Mountjoy K.G., Robbins L.S., Mortrud M.T., Low M.J., Tatro J.B., Entwistle M.L., Simerly R.B., Cone R.D. ( 1993 ) Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc Natl Acad Sci U S A ; 90 : 8856 – 8860.en_US
dc.identifier.citedreferenceGantz I., Konda Y., Tashiro T., Shimoto Y., Miwa H., Munzert G., Watson S.J., DelValle J., Yamada T. ( 1993 ) Molecular cloning of a novel melanocortin receptor. J Biol Chem ; 268 : 8246 – 8250.en_US
dc.identifier.citedreferenceGantz I., Miwa H., Konda Y., Shimoto Y., Tashiro T., Watson S.J., DelValle J., Yamada T. ( 1993 ) Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J Biol Chem ; 268 : 15174 – 15179.en_US
dc.identifier.citedreferenceGantz I., Shimoto Y., Konda Y., Miwa H., Dickinson C.J., Yamada T. ( 1994 ) Molecular cloning, expression, and characterization of a fifth melanocortin receptor. Biochem Biophys Res Commun ; 200 : 1214 – 1220.en_US
dc.identifier.citedreferenceOllmann M.M., Wilson B.D., Yang Y.K., Kerns J.A., Chen Y., Gantz I., Barsh G.S. ( 1997 ) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science ; 278 : 135 – 138.en_US
dc.identifier.citedreferenceLu D., Willard D., Patel I.R., Kadwell S., Overton L., Kost T., Luther M., Chen W., Woychik R.P., Wilkison W.O. et al. ( 1994 ) Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature ; 371 : 799 – 802.en_US
dc.identifier.citedreferenceEipper B.A., Mains R.E. ( 1980 ) Structure and biosynthesis of pro-ACTH/endorphin and related peptides. Endocr Rev ; 1 : 1 – 26.en_US
dc.identifier.citedreferenceSmith A.I., Funder J.W. ( 1988 ) Proopiomelanocortin processing in the pituitary, central nervous system and peripheral tissues. Endocr Rev ; 9 : 159 – 179.en_US
dc.identifier.citedreferenceButler A.A., Kesterson R.A., Khong K., Cullen M.J., Pelleymounter M.A., Dekoning J., Baetscher M., Cone R.D. ( 2000 ) A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology ; 141 : 3518 – 3521.en_US
dc.identifier.citedreferenceChen A.S., Marsh D.J., Trumbauer M.E., Frazier E.G., Guan X.M., Yu H., Rosenblum C.I., Vongs A., Feng Y., Cao L., Metzger J.M., Strack A.M., Camacho R.E., Mellin T.N., Nunes C.N. et al. ( 2000 ) Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet ; 26 : 97 – 102.en_US
dc.identifier.citedreferenceFan W., Boston B.A., Kesterson R.A., Hruby V.J., Cone R.D. ( 1997 ) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature ; 385 : 165 – 168.en_US
dc.identifier.citedreferenceKrude H., Biebermann H., Luck W., Horn R., Brabant G., Gruters A. ( 1998 ) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet ; 19 : 155 – 157.en_US
dc.identifier.citedreferenceHuszar D., Lynch C.A., Fairchild-Huntress V., Dunmore J.H., Fang Q., Berkemeier L.R., Gu W., Kesterson R.A., Boston B.A., Cone R.D., Smith F.J., Campfield L.A., Burn P., Lee F. ( 1997 ) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell ; 88 : 131 – 141.en_US
dc.identifier.citedreferenceVaisse C., Clement K., Durand E., Hercberg S., Guy-Grand B., Froguel P. ( 2000 ) Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest ; 106 : 253 – 262.en_US
dc.identifier.citedreferenceFarooqi I.S., Keogh J.M., Yeo G.S., Lank E.J., Cheetham T., O'Rahilly S. ( 2003 ) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med ; 348 : 1085 – 1095.en_US
dc.identifier.citedreferenceAl-Obeidi F., Castrucci A.M., Hadley M.E., Hruby V.J. ( 1989 ) Potent and prolonged acting cyclic lactam analogues of α -melanotropin: design based on molecular dynamics. J Med Chem ; 32 : 2555 – 2561.en_US
dc.identifier.citedreferenceHruby V.J., Lu D., Sharma S.D., Castrucci A.M.L., Kesterson R.A., Al-Obeidi F.A., Hadley M.E., Cone R.D. ( 1995 ) Cyclic lactam α -melanotropin analogues of Ac-Nle 4 -c[Asp 5, D Phe 7, Lys 10 ]- α -MSH(4-10)-NH 2 with bulky aromatic amino acids at position 7 show high antagonist potency and selectivity at specific melanocortin receptors. J Med Chem ; 38 : 3454 – 3461.en_US
dc.identifier.citedreferenceShutter J.R., Graham M., Kinsey A.C., Scully S., Luthy R., Stark K.L. ( 1997 ) Hypothalamic expression of art, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev ; 11 : 593 – 602.en_US
dc.identifier.citedreferenceRossi M., Kim M.S., Morgan D.G., Small C.J., Edwards C.M., Sunter D., Abusnana S., Goldstone A.P., Russell S.H., Stanley S.A., Smith D.M., Yagaloff K., Ghatei M.A., Bloom S.R. ( 1998 ) A C-terminal fragment of agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology ; 139 : 4428 – 4431.en_US
dc.identifier.citedreferenceHagan M.M., Rushing P.A., Pritchard L.M., Schwartz M.W., Strack A.M., Van Der Ploeg L.H., Woods S.C., Seeley R.J. ( 2000 ) Long-term orexigenic effects of AGRP-(83–132) involve mechanisms other than melanocortin receptor blockade. Am J Physiol Regul Integr Comp Physiol ; 279 : R47 – 52.en_US
dc.identifier.citedreferenceGraham M., Shutter J.R., Sarmiento U., Sarosi I., Stark K.L. ( 1997 ) Overexpression of AGRT leads to obesity in transgenic mice. Nat Genet ; 17 : 273 – 274.en_US
dc.identifier.citedreferenceChai B.X., Pogozheva I.D., Lai Y.M., Li J.Y., Neubig R.R., Mosberg H.I., Gantz I. ( 2005 ) Receptor-antagonist interactions in the complexes of agouti and agouti-related protein with human melanocortin 1 and 4 receptors. Biochemistry ; 44 : 3418 – 3431.en_US
dc.identifier.citedreferenceHaskell-Luevano C., Monck E.K. ( 2001 ) Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regul Pept ; 99 : 1 – 7.en_US
dc.identifier.citedreferenceNijenhuis W.A., Oosterom J., Adan R.A. ( 2001 ) Agrp(83–132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol ; 15 : 164 – 171.en_US
dc.identifier.citedreferenceYeo G.S., Farooqi I.S., Aminian S., Halsall D.J., Stanhope R.G., O'Rahilly S. ( 1998 ) A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet ; 20 : 111 – 112.en_US
dc.identifier.citedreferenceVaisse C., Clement K., Guy-Grand B., Froguel P. ( 1998 ) A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet ; 20 : 113 – 114.en_US
dc.identifier.citedreferenceHo G., MacKenzie R.G. ( 1999 ) Functional characterization of mutations in melanocortin-4 receptor associated with human obesity. J Biol Chem ; 274 : 35816 – 35822.en_US
dc.identifier.citedreferenceOhshiro Y., Sanke T., Ueda K., Shimajiri Y., Nakagawa T., Tsunoda K., Nishi M., Sasaki H., Takasu N., Nanjo K. ( 1999 ) Molecular scanning for mutations in the melanocortin-4 receptor gene in obese/diabetic Japanese. Ann Hum Genet ; 63 : 483 – 487.en_US
dc.identifier.citedreferenceMergen M., Mergen H., Ozata M., Oner R., Oner C. ( 2001 ) A novel melanocortin 4 receptor (MC4R) gene mutation associated with morbid obesity. J Clin Endocrinol Metab ; 86 : 3448.en_US
dc.identifier.citedreferenceRosmond R., Chagnon M., Bouchard C., Bjorntorp P. ( 2001 ) A missense mutation in the human melanocortin-4 receptor gene in relation to abdominal obesity and salivary cortisol. Diabetologia ; 44 : 1335 – 1338.en_US
dc.identifier.citedreferenceKobayashi H., Ogawa Y., Shintani M., Ebihara K., Shimodahira M., Iwakura T., Hino M., Ishihara T., Ikekubo K., Kurahachi H., Nakao K. ( 2002 ) A novel homozygous missense mutation of melanocortin-4 receptor (MC4R) in a Japanese woman with severe obesity. Diabetes ; 51 : 243 – 246.en_US
dc.identifier.citedreferenceLubrano-Berthelier C., Durand E., Dubern B., Shapiro A., Dazin P., Weill J., Ferron C., Froguel P., Vaisse C. ( 2003 ) Intracellular retention is a common characteristic of childhood obesity-associated MC4R mutations. Hum Mol Genet ; 12 : 145 – 153.en_US
dc.identifier.citedreferenceLubrano-Berthelier C., Le Stunff C., Bougneres P., Vaisse C. ( 2004 ) A homozygous null mutation delineates the role of the melanocortin-4 receptor in humans. J Clin Endocrinol Metab ; 89 : 2028 – 2032.en_US
dc.identifier.citedreferenceYeo G.S., Lank E.J., Farooqi I.S., Keogh J., Challis B.G., O'Rahilly S. ( 2003 ) Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms. Hum Mol Genet ; 12 : 561 – 574.en_US
dc.identifier.citedreferenceMarti A., Corbalan M.S., Forga L., Martinez J.A., Hinney A., Hebebrand J. ( 2003 ) A novel nonsense mutation in the melanocortin-4 receptor associated with obesity in a Spanish population. Int J Obes Relat Metab Disord ; 27 : 385 – 388.en_US
dc.identifier.citedreferenceFarooqi I.S., Yeo G.S., Keogh J.M., Aminian S., Jebb S.A., Butler G., Cheetham T., O'Rahilly S. ( 2000 ) Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest ; 106 : 271 – 279.en_US
dc.identifier.citedreferenceNijenhuis W.A., Garner K.M., van Rozen R.J., Adan R.A. ( 2003 ) Poor cell surface expression of human melanocortin-4 receptor mutations associated with obesity. J Biol Chem ; 278 : 22939 – 22945.en_US
dc.identifier.citedreferenceTao Y.X., Segaloff D.L. ( 2003 ) Functional characterization of melanocortin-4 receptor mutations associated with childhood obesity. Endocrinology ; 144 : 4544 – 4551.en_US
dc.identifier.citedreferenceHinney A., Hohmann S., Geller F., Vogel C., Hess C., Wermter A.K., Brokamp B., Goldschmidt H., Siegfried W., Remschmidt H., Schafer H., Gudermann T., Hebebrand J. ( 2003 ) Melanocortin-4 receptor gene: case-control study and transmission disequilibrium test confirm that functionally relevant mutations are compatible with a major gene effect for extreme obesity. J Clin Endocrinol Metab ; 88 : 4258 – 4267.en_US
dc.identifier.citedreferenceTarnow P., Schoneberg T., Krude H., Gruters A., Biebermann H. ( 2003 ) Mutationally induced disulfide bond formation within the third extracellular loop causes melanocortin 4 receptor inactivation in patients with obesity. J Biol Chem ; 278 : 48666 – 48673.en_US
dc.identifier.citedreferenceMa L., Tataranni P.A., Bogardus C., Baier L.J. ( 2004 ) Melanocortin 4 receptor gene variation is associated with severe obesity in Pima Indians. Diabetes ; 53 : 2696 – 2699.en_US
dc.identifier.citedreferenceValli-Jaakola K., Lipsanen-Nyman M., Oksanen L., Hollenberg A.N., Kontula K., Bjorbaek C., Schalin-Jantti C. ( 2004 ) Identification and characterization of melanocortin-4 receptor gene mutations in morbidly obese Finnish children and adults. J Clin Endocrinol Metab ; 89 : 940 – 945.en_US
dc.identifier.citedreferenceDonohoue P.A., Tao Y.X., Collins M., Yeo G.S., O'Rahilly S., Segaloff D.L. ( 2003 ) Deletion of codons 88–92 of the melanocortin-4 receptor gene: a novel deleterious mutation in an obese female. J Clin Endocrinol Metab ; 88 : 5841 – 5845.en_US
dc.identifier.citedreferenceLarsen L.H., Echwald S.M., Sorensen T.I., Andersen T., Wulff B.S., Pedersen O. ( 2005 ) Prevalence of mutations and functional analyses of melanocortin 4 receptor variants identified among 750 men with juvenile-onset obesity. J Clin Endocrinol Metab ; 90 : 219 – 224.en_US
dc.identifier.citedreferenceHolder J.R., Bauzo R.M., Xiang Z., Haskell-Luevano C. ( 2002 ) Structure-activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH 2 at the mouse melanocortin receptors: Part 2. Modifications at the Phe position. J Med Chem ; 45 : 3073 – 3081.en_US
dc.identifier.citedreferenceHaskell-Luevano C., Cone R.D., Monck E.K., Wan Y.P. ( 2001 ) Structure activity studies of the melanocortin-4 receptor by in vitro mutagenesis: identification of agouti-related protein (AGRP), melanocortin agonist and synthetic peptide antagonist interaction determinants. Biochemistry ; 40 : 6164 – 6179.en_US
dc.identifier.citedreferenceChen C.A., Okayama H. ( 1988 ) Calcium phosphate-medicated gene transfer: a highly efficient transfections system for stably transforming cells with plasmid DNA. Biotechniques ; 6 : 632 – 638.en_US
dc.identifier.citedreferenceChen W., Shields T.S., Stork P.J., Cone R.D. ( 1995 ) A colorimetric assay for measuring activation of Gs- and Gq-coupled signaling pathways. Anal Biochem ; 226 : 349 – 354.en_US
dc.identifier.citedreferenceSchild H.O. ( 1947 ) PA 2, a new scale for the measurement of drug antagonism. Br J Pharmacol Chemother ; 2 : 189 – 206.en_US
dc.identifier.citedreferenceKopp P., van Sande J., Parma J., Duprez L., Gerber H., Joss E., Jameson J.L., Dumont J.E., Vassart G. ( 1995 ) Brief report: Congenital hyperthyroidism caused by a mutation in the thyrotropin-receptor gene. N Engl J Med ; 332 : 150 – 154.en_US
dc.identifier.citedreferenceYang Y.K., Thompson D.A., Dickinson C.J., Wilken J., Barsh G.S., Kent S.B., Gantz I. ( 1999 ) Characterization of agouti-related protein binding to melanocortin receptors. Mol Endocrinol ; 13 : 148 – 155.en_US
dc.identifier.citedreferenceBowen W.P., Jerman J.C. ( 1995 ) Nonlinear regression using spreadsheets. Trends Pharmacol Sci ; 16 : 413 – 417.en_US
dc.identifier.citedreferenceLitherland S.A., Xie X.T., Hutson A.D., Wasserfall C., Whittaker D.S., She J.-X., Hofig A., Dennis M.A., Fuller D.K., Cook R., Schatz D., Moldawer L.L., Clare-Salzler M.J. ( 1999 ) Aberrant prostaglandin synthase 2 expression defines an antigen-presenting cell defect for insulin-dependent diabetes mellitus. J Clin Invest ; 104 : 515 – 523.en_US
dc.identifier.citedreferencePogozheva I.D., Chai B.X., Lomize A.L., Fong T.M., Weinberg D.H., Nargund R.P., Mulholland M.W., Gantz I., Mosberg H.I. ( 2005 ) Interactions of human melanocortin 4 receptor with small-molecule agonists. Biochemistry ; 44 : 11329 – 11341.en_US
dc.identifier.citedreferenceLi J., Edwards P.C., Burghammer M., Villa C., Schertler G.F. ( 2004 ) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol ; 343 : 1409 – 1438.en_US
dc.identifier.citedreferenceFowler C.B., Pogozheva I.D., Lomize A.L., LeVine H. 3rd, Mosberg H.I. ( 2004 ) Complex of an active mu-opioid receptor with a cyclic peptide agonist modeled from experimental constraints. Biochemistry ; 43 : 15796 – 15810.en_US
dc.identifier.citedreferenceRiek R.P., Rigoutsos I., Novotny J., Graham R.M. ( 2001 ) Non-alpha-helical elements modulate polytopic membrane protein architecture. J Mol Biol ; 306 : 349 – 362.en_US
dc.identifier.citedreferenceBrooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S., Karplus M. ( 1983 ) CHARMM: a program for macromolecular energy, minimization, and dynamics calculation. J Comput Chem ; 4 : 187 – 217.en_US
dc.identifier.citedreferenceBallesteros J.A., Weinstein H. ( 1995 ) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein coupled receptors. Methods Neurosci ; 25 : 366 – 428.en_US
dc.identifier.citedreferenceSawyer T.K., Sanfillippo P.J., Hruby V.J., Engel M.H., Heward C.B., Burnett J.B., Hadley M.E. ( 1980 ) 4-Norleucine, 7- D -phenylalanine- α -melanocyte-stimulating hormone: a highly potent α -melanotropin with ultra long biological activity. Proc Natl Acad Sci U S A ; 77 : 5754 – 5758.en_US
dc.identifier.citedreferenceSrinivasan S., Lubrano-Berthelier C., Govaerts C., Picard F., Santiago P., Conklin B.R., Vaisse C. ( 2004 ) Constitutive activity of the melanocortin-4 receptor is maintained by its N-terminal domain and plays a role in energy homeostasis in humans. J Clin Invest ; 114 : 1158 – 1164.en_US
dc.identifier.citedreferenceBroberger C., Johansen J., Johansson C., Schalling M., Hokfelt T. ( 1998 ) The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci U S A ; 95 : 15043 – 15048.en_US
dc.identifier.citedreferenceHaskell-Luevano C., Chen P., Li C., Chang K., Smith M.S., Cameron J.L., Cone R.D. ( 1999 ) Characterization of the neuroanatomical distribution of agouti related protein (AGRP) immunoreactivity in the rhesus monkey and the rat. Endocrinology ; 140 : 1408 – 1415.en_US
dc.identifier.citedreferenceCowley M.A., Smart J.L., Rubinstein M., Cerdan M.G., Diano S., Horvath T.L., Cone R.D., Low M.J. ( 2001 ) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature ; 411 : 480 – 484.en_US
dc.identifier.citedreferenceWatson S.J., Barchas J.D., Li C.H. ( 1977 ) Beta-lipotropin: localization of cells and axons in rat brain by immunocytochemistry. Proc Natl Acad Sci U S A ; 74 : 5155 – 5158.en_US
dc.identifier.citedreferenceHaskell-Luevano C., Chen P., Li C., Chang K., Smith M.S., Cameron J.L., Cone R.D. ( 1999 ) Characterization of the neuroanatomical distribution of agouti-related protein immunoreactivity in the rhesus monkey and the rat. Endocrinology ; 140 : 1408 – 1415.en_US
dc.identifier.citedreferenceJacobowitz D.M., O'Donohue T.L. ( 1978 ) Alpha-melanocyte stimulating hormone: immunohistochemical identification and mapping in neurons of rat brain. Proc Natl Acad Sci U S A ; 75 : 6300 – 6304.en_US
dc.identifier.citedreferenceKhachaturian H., Lewis M.E., Haber S.N., Akil H., Watson S.J. ( 1984 ) Proopiomelanocortin peptide immunocytochemistry in rhesus monkey brain. Brain Res Bull ; 13 : 785 – 800.en_US
dc.identifier.citedreferenceFinley J.C., Lindstrom P., Petrusz P. ( 1981 ) Immunocytochemical localization of beta-endorphin-containing neurons in the rat brain. Neuroendocrinology ; 33 : 28 – 42.en_US
dc.identifier.citedreferenceThornton J.E., Cheung C.C., Clifton D.K., Steiner R.A. ( 1997 ) Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology ; 138 : 5063 – 5066.en_US
dc.identifier.citedreferenceMizuno T.M., Kleopoulos S.P., Bergen H.T., Roberts J.L., Priest C.A., Mobbs C.V. ( 1998 ) Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and corrected in ob/ob and db/db mice, but is stimulated by leptin. Diabetes ; 47 : 294 – 297.en_US
dc.identifier.citedreferencePei G., Samama P., Lohse M., Wang M., Codina J., Lefkowitz R.J. ( 1994 ) A constitutively active mutant beta 2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc Natl Acad Sci U S A ; 91 : 2699 – 2702.en_US
dc.identifier.citedreferenceJin S., Cornwall M.C., Oprian D.D. ( 2003 ) Opsin activation as a cause of congenital night blindness. Nat Neurosci ; 6 : 731 – 735.en_US
dc.identifier.citedreferenceKenakin T. ( 2004 ) Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol Pharmacol ; 65 : 2 – 11.en_US
dc.identifier.citedreferenceCosta T., Herz A. ( 1989 ) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci U S A ; 86 : 7321 – 7325.en_US
dc.identifier.citedreferenceOkada T., Ernst O.P., Palczewski K., Hofmann K.P. ( 2001 ) Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem Sci ; 26 : 318 – 324.en_US
dc.identifier.citedreferenceMeng E.C., Bourne H.R. ( 2001 ) Receptor activation: what does the rhodopsin structure tell us ? Trends Pharmacol Sci ; 22 : 587 – 593.en_US
dc.identifier.citedreferenceGether U., Asmar F., Meinild A.K., Rasmussen S.G. ( 2002 ) Structural basis for activation of G-protein-coupled receptors. Pharmacol Toxicol ; 91 : 304 – 312.en_US
dc.identifier.citedreferencePatel A.B., Crocker E., Reeves P.J., Getmanova E.V., Eilers M., Khorana H.G., Smith S.O. ( 2005 ) Changes in interhelical hydrogen bonding upon rhodopsin activation. J Mol Biol ; 347 : 803 – 812.en_US
dc.identifier.citedreferenceFritze O., Filipek S., Kuksa V., Palczewski K., Hofmann K.P., Ernst O.P. ( 2003 ) Role of the conserved NPXXY(X)5,6F motif in the rhodopsin ground state and during activation. Proc Natl Acad Sci U S A ; 100 : 2290 – 2295.en_US
dc.identifier.citedreferenceLi B., Nowak N.M., Kim S.K., Jacobson K.A., Bagheri A., Schmidt C., Wess J. ( 2005 ) Random mutagenesis of the m3 muscarinic acetylcholine receptor expressed in yeast: identification of second-site mutations that restore function to a coupling-deficient mutant m3 receptor. J Biol Chem ; 280 : 5664 – 5675.en_US
dc.identifier.citedreferenceZhang M., Mizrachi D., Fanelli F., Segaloff D.L. ( 2005 ) The formation of a salt bridge between helices 3 and 6 is responsible for the constitutive activity and lack of hormone responsiveness of the naturally occurring L457R mutation of the human lutropin receptor. J Biol Chem ; 280 : 26169 – 26176.en_US
dc.identifier.citedreferenceAlves I.D., Cowell S.M., Salamon Z., Devanathan S., Tollin G., Hruby V.J. ( 2004 ) Different structural states of the proteolipid membrane are produced by ligand binding to the human delta-opioid receptor as shown by plasmon-waveguide resonance spectroscopy. Mol Pharmacol ; 65 : 1248 – 1257.en_US
dc.identifier.citedreferenceDevanathan S., Yao Z., Salamon Z., Kobilka B., Tollin G. ( 2004 ) Plasmon-waveguide resonance studies of ligand binding to the human beta 2-adrenergic receptor. Biochemistry ; 43 : 3280 – 3288.en_US
dc.identifier.citedreferenceKobilka B.K. ( 2002 ) Agonist-induced conformational changes in the beta2 adrenergic receptor. J Pept Res ; 60 : 317 – 321.en_US
dc.identifier.citedreferenceAlves I.D., Ciano K.A., Boguslavski V., Varga E., Salamon Z., Yamamura H.I., Hruby V.J., Tollin G. ( 2004 ) Selectivity, cooperativity, and reciprocity in the interactions between the delta-opioid receptor, its ligands, and g-proteins. J Biol Chem ; 279 : 44673 – 44682.en_US
dc.identifier.citedreferenceHan M., Smith S.O., Sakmar T.P. ( 1998 ) Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6. Biochemistry ; 37 : 8253 – 8261.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.