Show simple item record

Controlled delivery of inductive proteins, plasmid DNA and cells from tissue engineering matrices

dc.contributor.authorMurphy, William L.en_US
dc.contributor.authorMooney, David J.en_US
dc.date.accessioned2010-04-01T15:01:50Z
dc.date.available2010-04-01T15:01:50Z
dc.date.issued1999-10en_US
dc.identifier.citationMurphy, William L.; Mooney, David J. (1999). "Controlled delivery of inductive proteins, plasmid DNA and cells from tissue engineering matrices." Journal of Periodontal Research 34(7): 413-419. <http://hdl.handle.net/2027.42/65492>en_US
dc.identifier.issn0022-3484en_US
dc.identifier.issn1600-0765en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65492
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=10685370&dopt=citationen_US
dc.format.extent848957 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsMunksgaard 1999en_US
dc.subject.otherDrug Deliveryen_US
dc.subject.otherTissue Engineeringen_US
dc.subject.otherGrowth Factorsen_US
dc.subject.otherGuided Tissue Regenerationen_US
dc.titleControlled delivery of inductive proteins, plasmid DNA and cells from tissue engineering matricesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.identifier.pmid10685370en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65492/1/j.1600-0765.1999.tb02275.x.pdf
dc.identifier.doi10.1111/j.1600-0765.1999.tb02275.xen_US
dc.identifier.sourceJournal of Periodontal Researchen_US
dc.identifier.citedreferenceLanger R, Vacanti JP. Tissue engineering. Science 1993 ; 260 : 920 – 925.en_US
dc.identifier.citedreferencePutnam AJ, Mooney DJ. Tissue engineering using synthetic extracellular matrices. Nat Med 1996 ; 2 : 824 – 826.en_US
dc.identifier.citedreferenceSkalak R, Fox CF. Tissue engineering. Ann Biomed Eng 1991 ; 19 : 529 – 540.en_US
dc.identifier.citedreferencePomahac B, Svensjo T, Yao F, Brown H, Eriksson E. Tissue engineering of skin. Crit Rev Oral Biol Med 1998 ; 9 : 333 – 344.en_US
dc.identifier.citedreferenceFreed LE, Vunjaknovakovic G, Langer R. Cultivation of cell-polymer cartilage implants in bioreactors. J Cell Biochem 1993 ; 51 : 257 – 264.en_US
dc.identifier.citedreferenceCrane GM, Ishaug SL, Mikos AG. Tissue engineering of bone. Nat Med 1995 ; 1 : 1322 – 1324.en_US
dc.identifier.citedreferenceKim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 1998 ; 16 : 224 – 230.en_US
dc.identifier.citedreferenceGilding DG. Biodegradable polymers. In : Williams DF, ed. Biocompatibility of clinical implant materials, Boca Raton, FL : CRC Press, 1981 ; 209 – 232.en_US
dc.identifier.citedreferenceLi SM, Garreau H, Vert M. Structure-property relationships in the case of the degradation of massive poly-(Α-hydroxy acids) in aqueous media. J Mat Sci Mater Med 1990 ; 1 : 123 – 139.en_US
dc.identifier.citedreferencePark A, Wu B, Griffith LG. Integration of surface modification and 3D fabrication techniques to prepare patterned poly(l-lactide): substrates allowing regionally selective cell adhesion. J Biomat Sci Polymer Edn 1998 ; 9 : 89 – 110.en_US
dc.identifier.citedreferenceMooney DJ, Baldwin DF, Suh NP, Vavanti JP, Langer R. Novel approaches to fabricate porous sponges of poly-(d, l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 1996 ; 17 : 1417 – 1422.en_US
dc.identifier.citedreferenceHarris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J Biomed Mat Res 1998 ; 42 : 396 – 402.en_US
dc.identifier.citedreferenceLo H, Ponticiello MS, Leong KW. Fabrication of controlled release biodegradable polymer foams by phase separation. Tissue Eng 1995 ; 1 : 15 – 28.en_US
dc.identifier.citedreferenceKim BS, Mooney DJ. Engineering smooth muscle tissue with a predefined structure. J Biomed Mat Res 1998 ; 41 : 322 – 332.en_US
dc.identifier.citedreferencePontoriero R, Lindhe J. Guided tissue regeneration in the treatment of degree-H furcations in maxillary molars. J Clin Periodontol 1995 ; 22 : 756 – 763.en_US
dc.identifier.citedreferencePontoriero R, Lindhe J. Guided tissue regeneration in the treatment of degree-III furcations in maxillary molars. J Clin Periodontol 1995 ; 22 : 810 – 812.en_US
dc.identifier.citedreferenceBuser D, Dula K, Hirt HP, Schenk RK. Lateral ridge augmentation using autografts and barrier membranes: a clinical study with 40 partially edentulous patients. J Oral Maxillofac Surg 1996 ; 54 : 420 – 432.en_US
dc.identifier.citedreferenceVernino AR, Ringeisen A, Wang HL et al. Use of biodegradable polylactic acid barrier materials in the treatment of grade SI periodontal furcation defects in humans - part 1: a multicenter investigative clinical study. Int J Periodont Restor Dent 1999 ; 19 : 57 – 65.en_US
dc.identifier.citedreferenceGarrett S, Poison AM, Stoller NH et al. Comparison of bioabsorbable GTR barrier to a non-absorbable barrier in treating human class II furcation defects. A multi-center parallel design randomized single-blind trial. J Periodontol 1997 ; 7 : 667 – 675.en_US
dc.identifier.citedreferenceEickholz P, Kim TS, Holle P. Regenerative periodontal surgery with non-resorbable and biodegradable barriers: results after 24 months. J Clin Periodontol 1998 ; 25 : 666 – 676.en_US
dc.identifier.citedreferenceFerris RT. A review of guided tissue regeneration. Int Dent J 1998 ; 48 : 322 – 325.en_US
dc.identifier.citedreferenceMooney DJ, Langer R. Engineering biomaterials for tissue engineering: the 10–100 micron size scale. In : Bronzino JD, ed. Handbook of biomedical engineering. Hartford : CRC Press, 1995.en_US
dc.identifier.citedreferenceShea LD, Wang D, Francheschi RT, Mooney DJ. Bone formation from pre-osteoblasts on 3-d scaffolds, submitted.en_US
dc.identifier.citedreferenceMurphy WL, Kohn DH, Mooney DJ. Growth of continuous bone-like mineral on porous poly (lactic-co-glycolic acid) scaffolds in vitro. J Biomed Mater Res, in press.en_US
dc.identifier.citedreferenceHench LL, Wilson J. Surface-active biomaterials. Science 1984 ; 226 : 630 – 636.en_US
dc.identifier.citedreferenceLanger R. New methods of drug delivery. Science 1990 ; 249 : 1527 – 1532.en_US
dc.identifier.citedreferencePeters MC, Isenberg BC, Rowley JA, Mooney DJ. Release from alginate enhances the biological activity of vascular endothelial growth factor. J Biomat Sci Polymer Edn 1998 ; 9 : 1267 – 1278.en_US
dc.identifier.citedreferenceGiannobile WV. Periodontal tissue engineering by growth factors. Bone 1996 ; 19 : 23S – 37S.en_US
dc.identifier.citedreferenceMatsuda N, Lin WL, Kumar NM, Cho MI, Genco RJ. Mitogenic, chemotactic, and synthetic responses of rat periodontal ligament fibroblastic cells to polypeptide growth factors in vitro. J Periodonlol 1992 ; 63 : 515 – 525.en_US
dc.identifier.citedreferenceDennison DK, Vallone DR, Pinero GJ, Rittman B, Caffesse RG. Differential effect of TGF-Β1 and PDGF on proliferation of periodontal ligament cells and gingival fibroblasts. J Periodontol 1994 ; 65 : 641 – 648.en_US
dc.identifier.citedreferenceHaase HR, Clarkson RW, Waters MJ, Bartold PM. Growth factor modulation of mitogenic responses and proteoglycan synthesis by human periodontal fibroblasts. J Cell Physiol 1998 ; 174 : 353 – 361.en_US
dc.identifier.citedreferenceShea LD, Smiley E, Bonadio J, Mooney DJ. Controllable DNA delivery from three-dimensional polymer matrices for tissue engineering. Nat Biotechnol 1999 ; 17 : 551 – 554.en_US
dc.identifier.citedreferenceSoskolne WA. Subgingival delivery of therapeutic agents in the treatment of periodontal diseases. Crit Rev Oral Biol Med 1991 ; 8 : 164 – 174.en_US
dc.identifier.citedreferencePark YJ, Ku Y, Chung CP, Lee SJ. Controlled release of platelet-derived growth factor from porous poly(l-lactide) membranes for guided tissue regeneration. J Control Release 1998 ; 51 : 201 – 211.en_US
dc.identifier.citedreferenceGreenhalgh DG, Sprugel KH, Murray MJ, Ross R. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol 1990 ; 136 : 1235 – 1246.en_US
dc.identifier.citedreferenceMustoe TA, Pierce GF, Thomason A, Gramates P, Sporn MB, Deuel TF. Accelerated wound healing of incisional wounds in rats induced by transforming growth factor-beta. Science 1987 ; 237 : 1333 – 1336.en_US
dc.identifier.citedreferenceMustoe TA, Pierce GF, Thomason A, Gramates P, Sporn MB, Deuel TF. Accelerated healing of incisional wounds in rats induced by transforming growth factor-Β. Science 1987 ; 237 : 1333 – 1336.en_US
dc.identifier.citedreferenceMumper RJ, Hoffman AS, Poulakkainen PA, Bouchard LS, Gombotz WR. Calcium alginate beads for the oral delivery of transforming growth factor-Β 1 (TGF-Β1): stabilization of TGF-Β1 by the addition of acrylic acid within acid-treated beads. J Control Release 1994 ; 30 : 241 – 245.en_US
dc.identifier.citedreferenceGombotz WR, Pankey SC, Bouchard LS, Ranchalis J, Poulakkainen P. Controlled release of TGF-Β1 from a biodegradable matrix for bone regeneration. J Biomat Sci Polymer Edn 1993 ; 5 : 46 – 63.en_US
dc.identifier.citedreferenceBeck LS, Deguzman L, Lee WP et al. TGF-Β1 induces bone closure in skull defects. J Bone Min Res 1991 ; 6 : 1257 – 1265.en_US
dc.identifier.citedreferenceRipamonti U, Reddi AH. Periodontal regeneration: potential role of bone morphogenetic proteins. J Periodont Res 1994 ; 29 : 225 – 235, 576.en_US
dc.identifier.citedreferenceSheridan M, Shea LD, Peters MC, Mooney DJ. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release, in press.en_US
dc.identifier.citedreferenceMooney DJ, Rowley JA. Tissue engineering: integrating cells and materials to create functional tissue replacements. In : Park K, ed. Controlled drug delivery. Birkhauser.en_US
dc.identifier.citedreferenceKaufmann PM, Heimrath S, Kim BS, Mooney DJ. Highly porous polymer matrices as a three dimensional culture system for hepatocytes. Cell Transplant 1997 ; 6 : 463 – 468.en_US
dc.identifier.citedreferenceMooney DJ, Sano K, Kaufmann PM et al. Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges. J Biomed Mat Res 1997 ; 37 : 413 – 420.en_US
dc.identifier.citedreferenceVacanti CA, Kim W, Upton J et al. Tissue engineered growth of bone and cartilage. Transplant Proc 1993 ; 25 : 1019 – 1021.en_US
dc.identifier.citedreferenceRowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999 ; 20 : 45 – 53.en_US
dc.identifier.citedreferenceHubbell JA. Biomaterials in tissue engineering. Biotechnology 1995 ; 13 : 565 – 576.en_US
dc.identifier.citedreferenceMooney D, Hansen L, Vacanti J, Langer R, Farmer S, Ingber D. Switching from differentiation to growth in hepatocytes — control by the extracellular matrix. J Cell Physiol 1992 ; 151 : 497 – 505.en_US
dc.identifier.citedreferenceBouhadir KH, Hausman DS, Mooney DJ. Synthesis of cross-linked poly(aldehyde guluronate) hydrogels. Polymer 1999 ; 40 : 3575 – 3584.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.