Exploiting Gene-Environment Independence for Analysis of Case–Control Studies: An Empirical Bayes-Type Shrinkage Estimator to Trade-Off between Bias and Efficiency
dc.contributor.author | Mukherjee, Bhramar | en_US |
dc.contributor.author | Chatterjee, Nilanjan | en_US |
dc.date.accessioned | 2010-04-01T15:02:56Z | |
dc.date.available | 2010-04-01T15:02:56Z | |
dc.date.issued | 2008-09 | en_US |
dc.identifier.citation | Mukherjee, Bhramar; Chatterjee, Nilanjan (2008). "Exploiting Gene-Environment Independence for Analysis of Case–Control Studies: An Empirical Bayes-Type Shrinkage Estimator to Trade-Off between Bias and Efficiency." Biometrics 64(3): 685-694. <http://hdl.handle.net/2027.42/65511> | en_US |
dc.identifier.issn | 0006-341X | en_US |
dc.identifier.issn | 1541-0420 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/65511 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18162111&dopt=citation | en_US |
dc.description.abstract | Standard prospective logistic regression analysis of case–control data often leads to very imprecise estimates of gene-environment interactions due to small numbers of cases or controls in cells of crossing genotype and exposure. In contrast, under the assumption of gene-environment independence, modern “retrospective” methods, including the “case-only” approach, can estimate the interaction parameters much more precisely, but they can be seriously biased when the underlying assumption of gene-environment independence is violated. In this article, we propose a novel empirical Bayes-type shrinkage estimator to analyze case–control data that can relax the gene-environment independence assumption in a data-adaptive fashion. In the special case, involving a binary gene and a binary exposure, the method leads to an estimator of the interaction log odds ratio parameter in a simple closed form that corresponds to an weighted average of the standard case-only and case–control estimators. We also describe a general approach for deriving the new shrinkage estimator and its variance within the retrospective maximum-likelihood framework developed by Chatterjee and Carroll (2005, Biometrika 92, 399–418). Both simulated and real data examples suggest that the proposed estimator strikes a balance between bias and efficiency depending on the true nature of the gene-environment association and the sample size for a given study. | en_US |
dc.format.extent | 173297 bytes | |
dc.format.extent | 3110 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Inc | en_US |
dc.rights | ©2008 International Biometric Society | en_US |
dc.subject.other | Case-only Designs | en_US |
dc.subject.other | Gene-environment Interaction | en_US |
dc.subject.other | Profile Likelihood | en_US |
dc.subject.other | Retrospective Analysis | en_US |
dc.subject.other | Semiparametrics | en_US |
dc.title | Exploiting Gene-Environment Independence for Analysis of Case–Control Studies: An Empirical Bayes-Type Shrinkage Estimator to Trade-Off between Bias and Efficiency | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Mathematics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. email : [email protected] | en_US |
dc.contributor.affiliationother | Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland 20852, U.S.A. email : [email protected] | en_US |
dc.identifier.pmid | 18162111 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/65511/1/j.1541-0420.2007.00953.x.pdf | |
dc.identifier.doi | 10.1111/j.1541-0420.2007.00953.x | en_US |
dc.identifier.source | Biometrics | en_US |
dc.identifier.citedreference | Albert, P. S., Ratnasinghe, D., Tangrea, J., and Wacholder, S. ( 2001 ). Limitations of the case-only design for identifying gene-environment interactions. American Journal of Epidemiology 154, 687 – 693. | en_US |
dc.identifier.citedreference | Andersen, E. B. ( 1970 ). Asymptotic properties of conditional maximum likelihood estimators. Journal of the Royal Statistical Society, Series B 32, 283 – 301. | en_US |
dc.identifier.citedreference | Berger, J. O. ( 1985 ). Statistical Decision Theory and Bayesian Analysis. New York : Springer Verlag. | en_US |
dc.identifier.citedreference | Carlin, B. P. and Louis, T. A. ( 2000 ). Bayes and empirical Bayes methods for data analysis, 2nd edition. Boca Raton, FL : Chapman and Hall/CRC Press. | en_US |
dc.identifier.citedreference | Chatterjee, N. and Carroll, R. J. ( 2005 ). Semiparametric maximum likelihood estimation exploiting gene-environment independence in case-control studies. Biometrika 92, 399 – 418. | en_US |
dc.identifier.citedreference | Chen, J. and Chatterjee, N. ( 2007 ). Exploiting Hardy-Weinberg equilibrium for efficient screening of single SNP associations from case-control studies. Human Heredity 63, 196 – 204. | en_US |
dc.identifier.citedreference | Cox, D. R. ( 1975 ). A note on partially Bayes inference and the linear model. Biometrika 62, 651 – 654. | en_US |
dc.identifier.citedreference | Efron, B. ( 1993 ). Bayes and likelihood calculations from confidence intervals. Biometrika 80, 3 – 26. | en_US |
dc.identifier.citedreference | Efron, B. and Morris, C. ( 1972 ). Empirical Bayes on vector observations: An extension of Stein's method. Biometrika 59, 335 – 347. | en_US |
dc.identifier.citedreference | Epstein, M. P. and Satten, G. A. ( 2003 ). Inference on haplotype effects in case-control studies using unphased genotype data. American Journal of Human Genetics 73, 1316 – 1329. | en_US |
dc.identifier.citedreference | Gohagan J. K., Prorok P. C., Hayes R. B., and Kramer B. S. ( 2000 ). Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial Project Team. Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Controlled Clinical Trials 21 ( 6 suppl. ), 273S – 309S. | en_US |
dc.identifier.citedreference | Greenland, S. ( 1993 ). Methods for epidemiologic analyses of multiple exposures: A review and comparative study of maximum likelihood, preliminary-testing, and empirical Bayes regression. Statistics in Medicine 12, 717 – 736. | en_US |
dc.identifier.citedreference | Hayes R. B., Sigurdson A., Moore L., Peters U., Huang W. Y., Pinsky P., Reding D., Gelmann E. P., Rothman N., Pfeiffer R. M., Hoover R. N., and Berg C. D. ( 2005 ). Methods for etiologic and early marker investigations in the PLCO Trial. Mutation Research 592, 147 – 154. | en_US |
dc.identifier.citedreference | Lin, D. Y. and Zeng, D. ( 2006 ). Likelihood-based inference on haplotype effects in genetic association studies. Journal of the American Statistical Association 101, 89 – 104. | en_US |
dc.identifier.citedreference | Liu, X., Fallin, M. D., and Kao, W. H. ( 2004 ). Genetic dissection methods: Designs used for tests of gene-environment interaction. Current Opinions in Genetics and Development 14, 241 – 245. | en_US |
dc.identifier.citedreference | Marcus, P. M., Hayes, R. B., Vineis, P., et al. ( 2000 ). Cigarette smoking: N-acteyltransferease 2 acetylation status, and bladder cancer risk: A case series meta-analysis of a gene-environment interaction. Cancer Epidemiology, Biomarkers and Prevention 9, 461 – 467. | en_US |
dc.identifier.citedreference | Modan, B., Hartge, P., Hirsh-Yechezkel, G., et al. ( 2001 ). Parity, oral contraceptives and the risk of ovarian cancer among carriers and non-carriers of a BRCA1 or BRCA2 mutation. New England Journal of Medicine 345, 235 – 240. | en_US |
dc.identifier.citedreference | Morris, C. N. ( 1983 ). Parametric empirical Bayes inference: Theory and applications. Journal of the American Statistical Association 78, 47 – 55. | en_US |
dc.identifier.citedreference | Moslehi, R., Chatterjee, N., Church, T. R., Chen, J., Yeager, M., Weissfield, J., Hein, D. W., and Hayes, R. B. ( 2006 ). Cigarette smoking n-acetyltransferase genes and the risk of advanced colorectal adenoma. Pharmacogenomics 7, 819 – 829. | en_US |
dc.identifier.citedreference | Piegorsch, W. W., Weinberg, C. R., and Taylor, J. ( 1994 ). Nonhierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies. Statistics in Medicine 13, 153 – 162. | en_US |
dc.identifier.citedreference | Prentice, R. L. and Pyke, R. ( 1979 ). Logistic disease incidence models and case-control studies. Biometrika 66, 403 – 411. | en_US |
dc.identifier.citedreference | Satten, G. A. and Epstein, M. P. ( 2004 ). Comparison of prospective and retrospective methods for haplotype inference in case-control studies. Genetic Epidemiology 27, 192 – 201. | en_US |
dc.identifier.citedreference | Satten, G. A. and Kupper, L. L. ( 1993 ). Inferences about exposure-disease associations using probability-of-exposure information. Journal of the American Statistical Association 88, 200 – 208. | en_US |
dc.identifier.citedreference | Schmidt, S. and Schaid, D. J. ( 1999 ). Potential misinterpretation of the case-only study to assess gene-environment interaction. American Journal of Epidemiology 150, 878 – 885. | en_US |
dc.identifier.citedreference | Spinka, C., Carroll, R. J., and Chatterjee, N. ( 2005 ). Analysis of case-control studies of genetic and environmental factors with missing genetic information and haplotype-phase ambiguity. Genetic Epidemiology 29, 108 – 127. | en_US |
dc.identifier.citedreference | Tibshirani, R. ( 1989 ). Noninformative priors for one parameter of many. Biometrika 76, 604 – 608. | en_US |
dc.identifier.citedreference | Umbach, D. M. and Weinberg, C. R. ( 1997 ). Designing and analysing case-control studies to exploit independence of genotype and exposure. Statistics in Medicine 16, 1731 – 1743. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.