Show simple item record

Exploiting Gene-Environment Independence for Analysis of Case–Control Studies: An Empirical Bayes-Type Shrinkage Estimator to Trade-Off between Bias and Efficiency

dc.contributor.authorMukherjee, Bhramaren_US
dc.contributor.authorChatterjee, Nilanjanen_US
dc.date.accessioned2010-04-01T15:02:56Z
dc.date.available2010-04-01T15:02:56Z
dc.date.issued2008-09en_US
dc.identifier.citationMukherjee, Bhramar; Chatterjee, Nilanjan (2008). "Exploiting Gene-Environment Independence for Analysis of Case–Control Studies: An Empirical Bayes-Type Shrinkage Estimator to Trade-Off between Bias and Efficiency." Biometrics 64(3): 685-694. <http://hdl.handle.net/2027.42/65511>en_US
dc.identifier.issn0006-341Xen_US
dc.identifier.issn1541-0420en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65511
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18162111&dopt=citationen_US
dc.description.abstractStandard prospective logistic regression analysis of case–control data often leads to very imprecise estimates of gene-environment interactions due to small numbers of cases or controls in cells of crossing genotype and exposure. In contrast, under the assumption of gene-environment independence, modern “retrospective” methods, including the “case-only” approach, can estimate the interaction parameters much more precisely, but they can be seriously biased when the underlying assumption of gene-environment independence is violated. In this article, we propose a novel empirical Bayes-type shrinkage estimator to analyze case–control data that can relax the gene-environment independence assumption in a data-adaptive fashion. In the special case, involving a binary gene and a binary exposure, the method leads to an estimator of the interaction log odds ratio parameter in a simple closed form that corresponds to an weighted average of the standard case-only and case–control estimators. We also describe a general approach for deriving the new shrinkage estimator and its variance within the retrospective maximum-likelihood framework developed by Chatterjee and Carroll (2005, Biometrika 92, 399–418). Both simulated and real data examples suggest that the proposed estimator strikes a balance between bias and efficiency depending on the true nature of the gene-environment association and the sample size for a given study.en_US
dc.format.extent173297 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights©2008 International Biometric Societyen_US
dc.subject.otherCase-only Designsen_US
dc.subject.otherGene-environment Interactionen_US
dc.subject.otherProfile Likelihooden_US
dc.subject.otherRetrospective Analysisen_US
dc.subject.otherSemiparametricsen_US
dc.titleExploiting Gene-Environment Independence for Analysis of Case–Control Studies: An Empirical Bayes-Type Shrinkage Estimator to Trade-Off between Bias and Efficiencyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. email : [email protected]en_US
dc.contributor.affiliationotherDivision of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland 20852, U.S.A. email : [email protected]en_US
dc.identifier.pmid18162111en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65511/1/j.1541-0420.2007.00953.x.pdf
dc.identifier.doi10.1111/j.1541-0420.2007.00953.xen_US
dc.identifier.sourceBiometricsen_US
dc.identifier.citedreferenceAlbert, P. S., Ratnasinghe, D., Tangrea, J., and Wacholder, S. ( 2001 ). Limitations of the case-only design for identifying gene-environment interactions. American Journal of Epidemiology 154, 687 – 693.en_US
dc.identifier.citedreferenceAndersen, E. B. ( 1970 ). Asymptotic properties of conditional maximum likelihood estimators. Journal of the Royal Statistical Society, Series B 32, 283 – 301.en_US
dc.identifier.citedreferenceBerger, J. O. ( 1985 ). Statistical Decision Theory and Bayesian Analysis. New York : Springer Verlag.en_US
dc.identifier.citedreferenceCarlin, B. P. and Louis, T. A. ( 2000 ). Bayes and empirical Bayes methods for data analysis, 2nd edition. Boca Raton, FL : Chapman and Hall/CRC Press.en_US
dc.identifier.citedreferenceChatterjee, N. and Carroll, R. J. ( 2005 ). Semiparametric maximum likelihood estimation exploiting gene-environment independence in case-control studies. Biometrika 92, 399 – 418.en_US
dc.identifier.citedreferenceChen, J. and Chatterjee, N. ( 2007 ). Exploiting Hardy-Weinberg equilibrium for efficient screening of single SNP associations from case-control studies. Human Heredity 63, 196 – 204.en_US
dc.identifier.citedreferenceCox, D. R. ( 1975 ). A note on partially Bayes inference and the linear model. Biometrika 62, 651 – 654.en_US
dc.identifier.citedreferenceEfron, B. ( 1993 ). Bayes and likelihood calculations from confidence intervals. Biometrika 80, 3 – 26.en_US
dc.identifier.citedreferenceEfron, B. and Morris, C. ( 1972 ). Empirical Bayes on vector observations: An extension of Stein's method. Biometrika 59, 335 – 347.en_US
dc.identifier.citedreferenceEpstein, M. P. and Satten, G. A. ( 2003 ). Inference on haplotype effects in case-control studies using unphased genotype data. American Journal of Human Genetics 73, 1316 – 1329.en_US
dc.identifier.citedreferenceGohagan J. K., Prorok P. C., Hayes R. B., and Kramer B. S. ( 2000 ). Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial Project Team. Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Controlled Clinical Trials 21 ( 6 suppl. ), 273S – 309S.en_US
dc.identifier.citedreferenceGreenland, S. ( 1993 ). Methods for epidemiologic analyses of multiple exposures: A review and comparative study of maximum likelihood, preliminary-testing, and empirical Bayes regression. Statistics in Medicine 12, 717 – 736.en_US
dc.identifier.citedreferenceHayes R. B., Sigurdson A., Moore L., Peters U., Huang W. Y., Pinsky P., Reding D., Gelmann E. P., Rothman N., Pfeiffer R. M., Hoover R. N., and Berg C. D. ( 2005 ). Methods for etiologic and early marker investigations in the PLCO Trial. Mutation Research 592, 147 – 154.en_US
dc.identifier.citedreferenceLin, D. Y. and Zeng, D. ( 2006 ). Likelihood-based inference on haplotype effects in genetic association studies. Journal of the American Statistical Association 101, 89 – 104.en_US
dc.identifier.citedreferenceLiu, X., Fallin, M. D., and Kao, W. H. ( 2004 ). Genetic dissection methods: Designs used for tests of gene-environment interaction. Current Opinions in Genetics and Development 14, 241 – 245.en_US
dc.identifier.citedreferenceMarcus, P. M., Hayes, R. B., Vineis, P., et al. ( 2000 ). Cigarette smoking: N-acteyltransferease 2 acetylation status, and bladder cancer risk: A case series meta-analysis of a gene-environment interaction. Cancer Epidemiology, Biomarkers and Prevention 9, 461 – 467.en_US
dc.identifier.citedreferenceModan, B., Hartge, P., Hirsh-Yechezkel, G., et al. ( 2001 ). Parity, oral contraceptives and the risk of ovarian cancer among carriers and non-carriers of a BRCA1 or BRCA2 mutation. New England Journal of Medicine 345, 235 – 240.en_US
dc.identifier.citedreferenceMorris, C. N. ( 1983 ). Parametric empirical Bayes inference: Theory and applications. Journal of the American Statistical Association 78, 47 – 55.en_US
dc.identifier.citedreferenceMoslehi, R., Chatterjee, N., Church, T. R., Chen, J., Yeager, M., Weissfield, J., Hein, D. W., and Hayes, R. B. ( 2006 ). Cigarette smoking n-acetyltransferase genes and the risk of advanced colorectal adenoma. Pharmacogenomics 7, 819 – 829.en_US
dc.identifier.citedreferencePiegorsch, W. W., Weinberg, C. R., and Taylor, J. ( 1994 ). Nonhierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies. Statistics in Medicine 13, 153 – 162.en_US
dc.identifier.citedreferencePrentice, R. L. and Pyke, R. ( 1979 ). Logistic disease incidence models and case-control studies. Biometrika 66, 403 – 411.en_US
dc.identifier.citedreferenceSatten, G. A. and Epstein, M. P. ( 2004 ). Comparison of prospective and retrospective methods for haplotype inference in case-control studies. Genetic Epidemiology 27, 192 – 201.en_US
dc.identifier.citedreferenceSatten, G. A. and Kupper, L. L. ( 1993 ). Inferences about exposure-disease associations using probability-of-exposure information. Journal of the American Statistical Association 88, 200 – 208.en_US
dc.identifier.citedreferenceSchmidt, S. and Schaid, D. J. ( 1999 ). Potential misinterpretation of the case-only study to assess gene-environment interaction. American Journal of Epidemiology 150, 878 – 885.en_US
dc.identifier.citedreferenceSpinka, C., Carroll, R. J., and Chatterjee, N. ( 2005 ). Analysis of case-control studies of genetic and environmental factors with missing genetic information and haplotype-phase ambiguity. Genetic Epidemiology 29, 108 – 127.en_US
dc.identifier.citedreferenceTibshirani, R. ( 1989 ). Noninformative priors for one parameter of many. Biometrika 76, 604 – 608.en_US
dc.identifier.citedreferenceUmbach, D. M. and Weinberg, C. R. ( 1997 ). Designing and analysing case-control studies to exploit independence of genotype and exposure. Statistics in Medicine 16, 1731 – 1743.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.