Show simple item record

Functional circuitry of visual adaptation in the retina

dc.contributor.authorDemb, Jonathan B.en_US
dc.date.accessioned2010-04-01T15:03:35Z
dc.date.available2010-04-01T15:03:35Z
dc.date.issued2008-09-15en_US
dc.identifier.citationDemb, Jonathan B. (2008). "Functional circuitry of visual adaptation in the retina." The Journal of Physiology 586(18): 4377-4384. <http://hdl.handle.net/2027.42/65522>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65522
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18617564&dopt=citationen_US
dc.format.extent244314 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 The Physiological Societyen_US
dc.titleFunctional circuitry of visual adaptation in the retinaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ophthalmology & Visual Sciences and Department of Molecular, Cellular & Developmental Biology, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USAen_US
dc.identifier.pmid18617564en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65522/1/jphysiol.2008.156638.pdf
dc.identifier.doi10.1113/jphysiol.2008.156638en_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceBaccus SA & Meister M ( 2002 ). Fast and slow contrast adaptation in retinal circuitry. Neuron 36, 909 – 919.en_US
dc.identifier.citedreferenceBeaudoin DL, Borghuis BG & Demb JB ( 2007 ). Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells. J Neurosci 27, 2636 – 2645.en_US
dc.identifier.citedreferenceBenardete EA & Kaplan E ( 1999 ). The dynamics of primate M retinal ganglion cells. Vis Neurosci 16, 355 – 368.en_US
dc.identifier.citedreferenceBenardete EA, Kaplan E & Knight BW ( 1992 ). Contrast gain control in the primate retina: P cells are not X-like, some M cells are. Vis Neurosci 8, 483 – 486.en_US
dc.identifier.citedreferenceBloomfield SA & Dacheux RF ( 2001 ). Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res 20, 351 – 384.en_US
dc.identifier.citedreferenceBonin V, Mante V & Carandini M ( 2006 ). The statistical computation underlying contrast gain control. J Neurosci 26, 6346 – 6353.en_US
dc.identifier.citedreferenceBrown SP & Masland RH ( 2001 ). Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells. Nat Neurosci 4, 44 – 51.en_US
dc.identifier.citedreferenceCarandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y, Olshausen BA, Gallant JL & Rust NC ( 2005 ). Do we know what the early visual system does? J Neurosci 25, 10577 – 10597.en_US
dc.identifier.citedreferenceChander D & Chichilnisky EJ ( 2001 ). Adaptation to temporal contrast in primate and salamander retina. J Neurosci 21, 9904 – 9916.en_US
dc.identifier.citedreferenceChichilnisky EJ ( 2001 ). A simple white noise analysis of neuronal light responses. Network 12, 199 – 213.en_US
dc.identifier.citedreferenceDacey D, Packer OS, Diller L, Brainard D, Peterson B & Lee B ( 2000 ). Center surround receptive field structure of cone bipolar cells in primate retina. Vision Res 40, 1801 – 1811.en_US
dc.identifier.citedreferenceDemb JB ( 2002 ). Multiple mechanisms for contrast adaptation in the retina. Neuron 36, 781 – 783.en_US
dc.identifier.citedreferenceDemb JB, Haarsma L, Freed MA & Sterling P ( 1999 ). Functional circuitry of the retinal ganglion cell's nonlinear receptive field. J Neurosci 19, 9756 – 9767.en_US
dc.identifier.citedreferenceDunn FA, Doan T, Sampath AP & Rieke F ( 2006 ). Controlling the gain of rod-mediated signals in the mammalian retina. J Neurosci 26, 3959 – 3970.en_US
dc.identifier.citedreferenceDunn FA, Lankheet MJ & Rieke F ( 2007 ). Light adaptation in cone vision involves switching between receptor and post-receptor sites. Nature 449, 603 – 606.en_US
dc.identifier.citedreferenceDunn FA & Rieke F ( 2008 ). Single-photon absorptions evoke synaptic depression in the retina to extend the operational range of rod vision. Neuron 57, 894 – 904.en_US
dc.identifier.citedreferenceEnroth-Cugell C & Jakiela HG ( 1980 ). Suppression of cat retinal ganglion cell responses by moving patterns. J Physiol 302, 49 – 72.en_US
dc.identifier.citedreferenceFreed MA & Sterling P ( 1988 ). The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. J Neurosci 8, 2303 – 2320.en_US
dc.identifier.citedreferenceGaudry KS & Reinagel P ( 2007 a ). Benefits of contrast normalization demonstrated in neurons and model cells. J Neurosci 27, 8071 – 8079.en_US
dc.identifier.citedreferenceGaudry KS & Reinagel P ( 2007 b ). Contrast adaptation in a nonadapting LGN model. J Neurophysiol 98, 1287 – 1296.en_US
dc.identifier.citedreferenceHosoya T, Baccus SA & Meister M ( 2005 ). Dynamic predictive coding by the retina. Nature 436, 71 – 77.en_US
dc.identifier.citedreferenceKerschensteiner D, Liu H, Cheng CW, Demas J, Cheng SH, Hui CC, Chow RL & Wong RO ( 2008 ). Genetic control of circuit function: Vsx1 and Irx5 transcription factors regulate contrast adaptation in the mouse retina. J Neurosci 28, 2342 – 2352.en_US
dc.identifier.citedreferenceKim KJ & Rieke F ( 2001 ). Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. J Neurosci 21, 287 – 299.en_US
dc.identifier.citedreferenceKim KJ & Rieke F ( 2003 ). Slow Na + inactivation and variance adaptation in salamander retinal ganglion cells. J Neurosci 23, 1506 – 1516.en_US
dc.identifier.citedreferenceKohn A ( 2007 ). Visual adaptation: physiology, mechanisms, and functional benefits. J Neurophysiol 97, 3155 – 3164.en_US
dc.identifier.citedreferenceKolb H & Nelson R ( 1993 ). OFF-alpha and OFF-beta ganglion cells in cat retina. II. Neural circuitry as revealed by electron microscopy of HRP stains. J Comp Neurol 329, 85 – 110.en_US
dc.identifier.citedreferenceLesica NA, Jin J, Weng C, Yeh CI, Butts DA, Stanley GB & Alonso JM ( 2007 ). Adaptation to stimulus contrast and correlations during natural visual stimulation. Neuron 55, 479 – 491.en_US
dc.identifier.citedreferenceManookin MB, Beaudoin DL, Ernst ZR, Flagel LJ & Demb JB ( 2008 ). Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J Neurosci 28, 4136 – 4150.en_US
dc.identifier.citedreferenceManookin MB & Demb JB ( 2006 ). Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron 50, 453 – 464.en_US
dc.identifier.citedreferenceMante V, Frazor RA, Bonin V, Geisler WS & Carandini M ( 2005 ). Independence of luminance and contrast in natural scenes and in the early visual system. Nat Neurosci 8, 1690 – 1697.en_US
dc.identifier.citedreferenceÖlveczky BP, Baccus SA & Meister M ( 2007 ). Retinal adaptation to object motion. Neuron 56, 689 – 700.en_US
dc.identifier.citedreferencePalmer MJ, Hull C, Vigh J & von Gersdorff H ( 2003 ). Synaptic cleft acidification and modulation of short-term depression by exocytosed protons in retinal bipolar cells. J Neurosci 23, 11332 – 11341.en_US
dc.identifier.citedreferencePeichl L, Ott H & Boycott BB ( 1987 ). Alpha ganglion cells in mammalian retinae. Proc R Soc Lond B Biol Sci 231, 169 – 197.en_US
dc.identifier.citedreferenceYu Y, Potetz B & Lee TS ( 2005 ). The role of spiking nonlinearity in contrast gain control and information transmission. Vision Res 45, 583 – 592.en_US
dc.identifier.citedreferenceRieke F ( 2001 ). Temporal contrast adaptation in salamander bipolar cells. J Neurosci 21, 9445 – 9454.en_US
dc.identifier.citedreferenceRoska B & Werblin F ( 2003 ). Rapid global shifts in natural scenes block spiking in specific ganglion cell types. Nat Neurosci 6, 600 – 608.en_US
dc.identifier.citedreferenceShapley RM & Victor JD ( 1978 ). The effect of contrast on the transfer properties of cat retinal ganglion cells. J Physiol 285, 275 – 298.en_US
dc.identifier.citedreferenceShapley RM & Victor JD ( 1979 ). Nonlinear spatial summation and the contrast gain control of cat retinal ganglion cells. J Physiol 290, 141 – 161.en_US
dc.identifier.citedreferenceSinger JH & Diamond JS ( 2006 ). Vesicle depletion and synaptic depression at a mammalian ribbon synapse. J Neurophysiol 95, 3191 – 3198.en_US
dc.identifier.citedreferenceSmirnakis SM, Berry MJ, Warland DK, Bialek W & Meister M ( 1997 ). Adaptation of retinal processing to image contrast and spatial scale. Nature 386, 69 – 73.en_US
dc.identifier.citedreferenceSolomon SG, Lee BB & Sun H ( 2006 ). Suppressive surrounds and contrast gain in magnocellular-pathway retinal ganglion cells of macaque. J Neurosci 26, 8715 – 8726.en_US
dc.identifier.citedreferenceSolomon SG, Peirce JW, Dhruv NT & Lennie P ( 2004 ). Profound contrast adaptation early in the visual pathway. Neuron 42, 155 – 162.en_US
dc.identifier.citedreferenceVictor JD ( 1987 ). The dynamics of the cat retinal X cell centre. J Physiol 386, 219 – 246.en_US
dc.identifier.citedreferenceVolgyi B, Xin D, Amarillo Y & Bloomfield SA ( 2001 ). Morphology and physiology of the polyaxonal amacrine cells in the rabbit retina. J Comp Neurol 440, 109 – 125.en_US
dc.identifier.citedreferenceWark B, Lundstrom BN & Fairhall A ( 2007 ). Sensory adaptation. Curr Opin Neurobiol 17, 423 – 429.en_US
dc.identifier.citedreferenceWÄssle H ( 2004 ). Parallel processing in the mammalian retina. Nat Rev Neurosci 5, 747 – 757.en_US
dc.identifier.citedreferenceWerblin FS ( 1972 ). Lateral interactions at inner plexiform layer of vertebrate retina: antagonistic responses to change. Science 175, 1008 – 1010.en_US
dc.identifier.citedreferenceYu Y & Lee TS ( 2003 ). Dynamical mechanisms underlying contrast gain control in single neurons. Phys Rev E Stat Nonlin Soft Matter Phys 68, 011901.en_US
dc.identifier.citedreferenceZaghloul KA, Boahen K & Demb JB ( 2003 ). Different circuits for ON and OFF retinal ganglion cells cause different contrast sensitivities. J Neurosci 23, 2645 – 2654.en_US
dc.identifier.citedreferenceZaghloul KA, Boahen K & Demb JB ( 2005 ). Contrast adaptation in subthreshold and spiking responses of mammalian Y-type retinal ganglion cells. J Neurosci 25, 860 – 868.en_US
dc.identifier.citedreferenceZaghloul KA, Manookin MB, Borghuis BG, Boahen K & Demb JB ( 2007 ). Functional circuitry for peripheral suppression in mammalian Y-type retinal ganglion cells. J Neurophysiol 97, 4327 – 4340.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.