Show simple item record

Developmental and Regional Studies of the Metabolism of Inositol 1,4,5-Trisphosphate in Rat Brain

dc.contributor.authorHeacock, Anne M.en_US
dc.contributor.authorSeguin, Edward B.en_US
dc.contributor.authorAgranoff, Bernard W.en_US
dc.date.accessioned2010-04-01T15:04:55Z
dc.date.available2010-04-01T15:04:55Z
dc.date.issued1990-04en_US
dc.identifier.citationHeacock, Anne M.; Seguin, Edward B.; Agranoff, Bernard W. (1990). "Developmental and Regional Studies of the Metabolism of Inositol 1,4,5-Trisphosphate in Rat Brain." Journal of Neurochemistry 54(4): 1405-1411. <http://hdl.handle.net/2027.42/65545>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65545
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=2313293&dopt=citationen_US
dc.description.abstractCoupling of CNS receptors to phosphoinositide turnover has previously been found to vary with both age and brain region. To determine whether the metabolism of the second messenger inositol 1,4,5-trisphosphate also displays such variations, activities of inositol 1,4,5-trisphosphate 5′-phosphatase and 3′-kinase were measured in developing rat cerebral cortex and adult rat brain regions. The 5′-phosphatase activity was relatively high at birth (∼50% of adult values) and increased to adult levels by 2 weeks postnatal. In contrast, the 3′-kinase activity was low at birth and reached ∼50% of adult levels by 2 weeks postnatal. In the adult rat, activities of the 3′-kinase were comparable in the cerebral cortex, hippocampus, and cerebellum, whereas much lower activities were found in hypothalamus and pons/medulla. The 5′-phosphatase activities were similar in cerebral cortex, hippocampus, hypothalamus, and pons/medulla, whereas 5-to 10-fold higher activity was present in the cerebellum. The cerebellum is estimated to contain 50–60% of the total inositol 1,4,5-trisphosphate 5′-phosphatase activity present in whole adult rat brain. The localization of the enriched 5′-phosphatase activity within the cerebellum was examined. Application of a histochemical lead-trapping technique for phosphatase indicated a concentration of inositol 1,4,5-trisphosphate 5′-phosphatase activity in the cerebellar molecular layer. Further support for this conclusion was obtained from studies of Purkinje cell-deficient mutant mice, in which a marked decrement of cerebellar 5′-phosphatase was observed. These results suggest that the metabolic fate of inositol 1,4,5-trisphosphate depends on both brain region and stage of development.en_US
dc.format.extent986401 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1990 International Society for Neurochemistry Ltd.en_US
dc.subject.otherInositol Phosphate Metabolismen_US
dc.subject.otherDevelopmenten_US
dc.subject.otherCerebellumen_US
dc.subject.otherInositol 1,4,5-trisphosphate Receptoren_US
dc.titleDevelopmental and Regional Studies of the Metabolism of Inositol 1,4,5-Trisphosphate in Rat Brainen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumNeuroscience Laboratory, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid2313293en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65545/1/j.1471-4159.1990.tb01976.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1990.tb01976.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAgranoff B. W., Murthy P., and Seguin E. B. ( 1983 ) Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J. Biol. Chem. 258, 2076 – 2078.en_US
dc.identifier.citedreferenceBiden T. J., Comte M., Cox J. A., and Wollheim C. B. ( 1987 ) Calcium-calmodulin stimulates inositol 1,4,5-trisphosphate kinase activity from insulin-secreting RINm5F cells. J. Biol. Chem. 262, 9437 – 9440.en_US
dc.identifier.citedreferenceBredt D. S., Mourey R. J., and Snyder S. H. ( 1989 ) A simple, sensitive, and specific radioreceptor assay for inositol 1,4,5-trisphosphate in biological tissues. Biochem. Biophys. Res. Commun. 159, 976 – 982.en_US
dc.identifier.citedreferenceConnolly T. M., Bross T. E., and Majerus P. W. ( 1985 ) Isolation of a phosphomonoesterase from human platelets that specifically hydrolyzes the 5′-phosphate of inositol 1,4,5-trisphosphate. J. Biol. Chem. 260, 7868 – 7874.en_US
dc.identifier.citedreferenceDaniel J. L., Dangelmaier C. A., and Smith J. B. ( 1988 ) Calcium modulates the generation of inositol 1,3,4-trisphosphate in human platelets by the activation of inositol 1,4,5-trisphosphate 3-kinase. Biochem. J. 253, 789 – 794.en_US
dc.identifier.citedreferenceDean N. M. and Moyer J. D. ( 1987 ) Separation of multiple isomers of inositol phosphates formed in GH 3 cells. Biochem. J. 242, 361 – 366.en_US
dc.identifier.citedreferenceDownes C. P., Mussat M. C., and Michell R. H. ( 1982 ) The inositol trisphosphate phosphomonoesterase of the human erythrocyte membrane. Biochem. J. 203, 169 – 177.en_US
dc.identifier.citedreferenceErneux C., Delvaux A., Moreau C., and Dumont J. E. ( 1986 ) Characterization of D- myo -inositol 1,4,5-trisphosphate phosphatase in rat brain. Biochem. Biophys. Res. Commun. 134, 351 – 358.en_US
dc.identifier.citedreferenceErneux C., Delvaux A., Moreau C., and Dumont J. E. ( 1987 ) The dephosphorylation pathway of D- myo -inositol 1,3,4,5-tetrakisphosphate in rat brain. Biochem. J. 247, 635 – 639.en_US
dc.identifier.citedreferenceFisher S. K. and Agranoff B. W. ( 1987 ) Receptor activation and inositol lipid hydrolysis in neural tissues. J. Neurochem. 48, 999 – 1016.en_US
dc.identifier.citedreferenceGeiger P. J. and Bessman S. P. ( 1972 ) Protein determination by Lowry's method in the presence of sulfhydryl reagents. Anal. Biochem. 49, 467 – 473.en_US
dc.identifier.citedreferenceGerfen C. R., Choi W. C., Suh P. G., and Rhee S. G. ( 1988 ) Phospholipase C I and II brain isozymes: immunohistochemical localization in neuronal systems in rat brain. Proc. Acad. Sci. USA 85, 3208 – 3212.en_US
dc.identifier.citedreferenceGhosh T. K., Eis P. S., Mullaney J. M., Ebert C. L., and Gill D. L. ( 1988 ) Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin. J. Biol. Chem. 263, 11075 – 11079.en_US
dc.identifier.citedreferenceHansen C. A., Johanson R. A., Williamson M. T., and Williamson J. R. ( 1987 ) Purification and characterization of two types of soluble inositol phosphate 5′-phosphomonoesterases from rat brain. J. Biol. Chem. 262, 17319 – 17326.en_US
dc.identifier.citedreferenceHeacock A. M., Fisher S. K., and Agranoff B. W. ( 1987 ) Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover. J. Neurochem. 48, 1904 – 1911.en_US
dc.identifier.citedreferenceHeacock A. M., Seguin E. B., and Agranoff B. W. ( 1988 ) Components of the IP 3 second messenger system in rat brain differ in developmental regulation and regional localization. Soc. Neurosci. Abstr. 14, 129.en_US
dc.identifier.citedreferenceHeacock A. M., Seguin E. B., and Agranoff B. W. ( 1989 ) Biochemical and histochemical measurements of components of the IP 3 second messenger system in rat and human brain. J. Neurochem. 52 ( Suppl. ), S163.en_US
dc.identifier.citedreferenceHoer D., Kwiatkowski A., Seib C., Rosenthal W., Schultz G., and Oberdisse E. ( 1988 ) Degradation of inositol 1,3,4,5-tetrakisphosphates by porcine brain cytosol yields inositol 1,3,4-trisphosphate and inositol 1,4,5-trisphosphate. Biochem. Biophys. Res. Commun. 154, 668 – 675.en_US
dc.identifier.citedreferenceIrvine R. F. ( 1989 ) How do inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate regulate intracellular Ca 2+ ? Biochem. Soc. Trans. 17, 6 – 9.en_US
dc.identifier.citedreferenceIrvine R. F., Letcher A. J., Heslop J. P., and Berridge M. J. ( 1986 ) The inositol tris/tetrakisphosphate pathway---demonstration of Ins(1,4,5)P 3 3-kinase activity in animal tissues. Nature 320, 631 – 634.en_US
dc.identifier.citedreferenceJohanson R. A., Hansen C. A., and Williamson J. R. ( 1988 ) Purification of D- myo -inositol 1,4,5-trisphosphate 3-kinase from rat brain. J. Biol. Chem. 263, 7465 – 7471.en_US
dc.identifier.citedreferenceJoseph S. K., Rice H. L., and Williamson J. R. ( 1989 ) The effect of external calcium and pH on inositol trisphosphate-mediated calcium release from cerebellum microsomal fractions. Biochem. J. 258, 261 – 265.en_US
dc.identifier.citedreferenceMeek J. L. ( 1986 ) Inositol bis-, tris- and tetrakis(phosphate)s: analysis in tissues by HPLC. Proc. Natl. Acad. Sci. USA 83, 4162 – 4166.en_US
dc.identifier.citedreferenceMinta A., Harootunian A. T., Kao J. P., and Tsien R. Y. ( 1987 ) New fluorescent indicators for intracellular sodium and calcium. J. Cell Biol. 105, 89a.en_US
dc.identifier.citedreferenceMorris A. J., Downes C. P., Harden T. K., and Michell R. H. ( 1987 ) Turkey erythrocytes possess a membrane-associated inositol 1,4,5-trisphosphate 3-kinase that is activated by Ca 2+ in the presence of calmodulin. Biochem. J. 248, 489 – 493.en_US
dc.identifier.citedreferenceMorris A. J., Murray K. J., England P. J., Downes C. P., and Michell R. H. ( 1988 ) Partial purification and some properties of rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem. J. 251, 157 – 163.en_US
dc.identifier.citedreferenceNicoletti F., Iadarola M. J., Wroblewski J. T., and Costa E. ( 1986 ) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with Α 1 -adrenoceptors. Proc. Natl Acad. Sci. USA 83, 1931 – 1935.en_US
dc.identifier.citedreferenceNishizuka Y. ( 1988 ) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334, 661 – 665.en_US
dc.identifier.citedreferenceRooney T. A. and Nahorski S. R. ( 1987 ) Postnatal ontogeny of agonist and depolarization-induced phosphoinositide hydrolysis in rat cerebral cortex. J. Pharmacol. Exp. Ther. 243, 333 – 341.en_US
dc.identifier.citedreferenceRyu S. H., Lee S. Y., Lee K.-Y., and Rhee S. G. ( 1987 ) Catalytic properties of inositol trisphosphate kinase: activation by Ca 2+ and calmodulin. FASEB J. 1, 388 – 393.en_US
dc.identifier.citedreferenceSchoen S. W., Graeber M. B., Toth L., and Kreutzberg G. W. ( 1988 ) 5′-Nucleotidase in postnatal ontogeny of rat cerebellum: a marker for migrating nerve cells ? Dev. Brain Res. 39, 125 – 136.en_US
dc.identifier.citedreferenceSeyfred M. A., Farrell L. E., and Wells W. W. ( 1984 ) Characterization of d-myo -inositol 1,4,5-trisphosphate phosphatase in rat liver plasma membranes. J. Biol. Chem. 259, 13204 – 13208.en_US
dc.identifier.citedreferenceShears S. B. ( 1989 ) Metabolism of the inositol phosphates produced upon receptor activation. Biochem. J. 260, 313 – 324.en_US
dc.identifier.citedreferenceSeiffert U. B. and Agranoff B. W. ( 1965 ) Isolation and separation of inositol phosphates from hydrolysates of rat tissues. Biochim. Biophys. Acta 98, 574 – 581.en_US
dc.identifier.citedreferenceStauderman K. A., Harris G. D., and Lovenberg W. ( 1988 ) Characterization of inositol 1,4,5-trisphosphate-stimulated calcium release from rat cerebellar microsomal fractions. Biochem. J. 255, 677 – 683.en_US
dc.identifier.citedreferenceWachstein M. and Meisel E. ( 1957 ) Histochemistry of hepatic phosphatases at a physiologic pH with special reference to the demonstration of bile canaliculi. Am. J. Clin. Pathol. 27, 13 – 23.en_US
dc.identifier.citedreferenceWorley P. F., Baraban J. M., Colvin J. S., and Snyder S. H. ( 1987a ) Inositol trisphosphate receptor localization in brain: variable stoichiometry with protein kinase C. Nature 325, 159 – 161.en_US
dc.identifier.citedreferenceWorley P. F., Baraban J. M., Supattapone S., Wilson V. S., and Snyder S. H. ( 1987b ) Characterization of inositol trisphosphate receptor binding in brain. J. Biol. Chem. 262, 12132 – 12136.en_US
dc.identifier.citedreferenceWorley P. F., Baraban J. M., and Snyder S. H. ( 1989 ) Inositol 1,4,5-trisphosphate receptor binding: autoradiographic localization in rat brain. J. Neurosci. 9, 339 – 346.en_US
dc.identifier.citedreferenceYamaguchi K., Hirata M., and Kuriyama H. ( 1988 ) Purification and characterization of inositol 1,4,5-trisphosphate 3-kinase from pig aortic smooth muscle. Biochem. J. 251, 129 – 134.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.