Show simple item record

Serum-induced changes in the physiology of mammalian retinal glial cells: role of lysophosphatidic acid

dc.contributor.authorKusaka, Shunjien_US
dc.contributor.authorKapousta-Bruneau, Natalia V.en_US
dc.contributor.authorGreen, Daniel G.en_US
dc.contributor.authorPuro, Donald G.en_US
dc.date.accessioned2010-04-01T15:06:24Z
dc.date.available2010-04-01T15:06:24Z
dc.date.issued1998-01en_US
dc.identifier.citationKusaka, Shunji; Kapousta-Bruneau, Natalia; Green, Daniel G.; Puro, Donald G. (1998). "Serum-induced changes in the physiology of mammalian retinal glial cells: role of lysophosphatidic acid." The Journal of Physiology 506(2): 445-458. <http://hdl.handle.net/2027.42/65571>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65571
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=9490871&dopt=citationen_US
dc.format.extent825648 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© The Physiological Society 1998en_US
dc.titleSerum-induced changes in the physiology of mammalian retinal glial cells: role of lysophosphatidic aciden_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Departments of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USAen_US
dc.contributor.affiliationum† Physiology, University of Michigan, Ann Arbor, MI 48105, USAen_US
dc.identifier.pmid9490871en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65571/1/j.1469-7793.1998.445bw.x.pdf
dc.identifier.doi10.1111/j.1469-7793.1998.445bw.xen_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceAn, S., Dickens, M. A., Bleu, T., Hallmark, O. G. & Goetzl, E. J. ( 1997 ). Molecular cloning of the human edg2 protein and its identification as a functional cellular receptor for lysophosphatidic acid. Biochemical and Biophysical Research Communications 231, 619 – 622.en_US
dc.identifier.citedreferenceBarry, P. H. ( 1993 ). JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. Journal of Neuroscience Methods 51, 107 – 116.en_US
dc.identifier.citedreferenceBrew, H., Gray, P. T. A., Mobbs, P. & Attwell, D. ( 1986 ). Endfeet of retinal glial cells have higher densities of ion channels that mediated K + buffering. Nature 324, 466 – 468.en_US
dc.identifier.citedreferenceCandia, S., Garcia, M. L. & LaTorre, R. ( 1992 ). Mode of action of iberiotoxin, a potent blocker of the large conductance Ca 2+ -activated K + channel. Biophysical Journal 63, 583 – 590.en_US
dc.identifier.citedreferenceDas, A. K. & Hajra, A. K. ( 1989 ). Quantification, characterization and fatty acid composition of lysophosphatidic acid in different rat tissues. Lipids 24, 329 – 333.en_US
dc.identifier.citedreferenceFrishman, L. J., Yamamoto, F., Bogucks, J. & Steinberg, R. H. ( 1992 ). Light-evoked changes in [K + ] o in proximal portion of light-adapted cat retina. Journal of Neurophysiology 67, 1201 – 1212.en_US
dc.identifier.citedreferenceGarcia-Calvo, M., Leonard, R. J., Novick, J., Stevens, S. P., Schmalhofer, W., Kaczorowski, G. J. & Garcia, M. L. ( 1993 ). Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. Journal of Biological Chemistry 268, 18866 – 18874.en_US
dc.identifier.citedreferenceGass, J. D. M. ( 1997 ). Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment. Mosby, St Louis, MO, USA.en_US
dc.identifier.citedreferenceHecht, J. H., Weiner, J. A., Post, S. R. & Chun, J. ( 1996 ). Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. Journal of Cell Biology 135, 1071 – 1083.en_US
dc.identifier.citedreferenceHille, B. ( 1992 ). Ionic Channels of Excitable Membranes. Sinauer, Sunderland, MA, USA.en_US
dc.identifier.citedreferenceKarwoski, C. J., Xu, X. & Yu, H. ( 1996 ). Current-source density analysis of the electroretinogram of the frog: methodological issues and origin of components. Journal of the Optical Society of America A 13, 549 – 556.en_US
dc.identifier.citedreferenceKeller, J. N., Steiner, M. R., Mattson, M. P. & Steiner, S. M. ( 1996 ). Lysophosphatidic acid decreases glutamate and glucose uptake by astrocytes. Journal of Neurochemistry 67, 2300 – 2305.en_US
dc.identifier.citedreferenceKusaka, S., Dabin, I., Barnstable, C. J. & Puro, D. G. ( 1996 ). cGMP-mediated effects on the physiology of bovine and human retinal MÜller (glial) cells. The Journal of Physiology 497, 813 – 824.en_US
dc.identifier.citedreferenceKusaka, S. & Puro, D. G. ( 1997 ). Intracellular ATP activates inwardly rectifying K + channels in human and monkey retinal MÜller (glial) cells. The Journal of Physiology 500, 593 – 604.en_US
dc.identifier.citedreferenceLin, C. S., Boltz, R. C., Blake, J. T., Nguyen, M., Talento, A., Fischer, P. A., Springer, M. S., Sigal, N. H., Slaughter, R. S., Garcia, M. L., Kaczorowski, G. J. & Koo, G. C. ( 1993 ). Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. Journal of Experimental Medicine 177, 637 – 645.en_US
dc.identifier.citedreferenceMayer, M. L. & Westbrook, G. L. ( 1987 ). Permeation and block of N -methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. The Journal of Physiology 394, 501 – 527.en_US
dc.identifier.citedreferenceMoolenaar, W. H. ( 1995 ). Lysophosphatidic acid, a multifunctional phospholipid messenger. Journal of Biological Chemistry 270, 12949 – 12952.en_US
dc.identifier.citedreferenceNadal, A., Fuentes, E., Pastor, J. & McNaughton, P. A. ( 1997 ). Plasma albumin induces calcium waves in rat cortical astrocytes. Glia 19, 343 – 351.en_US
dc.identifier.citedreferenceNewman, E. A. ( 1985 ). Membrane physiology of retinal glial (MÜller) cells. Journal of Neuroscience 5, 2225 – 2239.en_US
dc.identifier.citedreferenceNewman, E. A. ( 1993 ). Inward-rectifying potassium channels in retinal glial (MÜller) cells. Journal of Neuroscience 13, 3333 – 3345.en_US
dc.identifier.citedreferenceNewman, E. A. ( 1995 ). Glial cell regulation of extracellular potassium. In Neuroglia, ed. Kettenmann, H. & Ransom, B. R., pp. 717 – 731. Oxford University Press, New York.en_US
dc.identifier.citedreferenceNewman, E. A., Frambach, D. A. & Odette, L. L. ( 1984 ). Control of extracellular potassium levels by retinal glial K + siphoning. Science 225, 1174 – 1175.en_US
dc.identifier.citedreferenceNewman, E. A. & Reichenbach, A. ( 1996 ). The MÜller cell: a functional element of the retina. Trends in Neurosciences 19, 307 – 312.en_US
dc.identifier.citedreferenceOakley, B. II & Green, D. G. ( 1976 ). Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. Journal of Neurophysiology 39, 1117 – 1133.en_US
dc.identifier.citedreferenceOakley, B. II, Katz, B. J., Xu, Z. & Zheng, J. ( 1992 ). Spatial buffering of extracellular potassium by MÜller (glial) cells in the toad retina. Experimental Eye Research 55, 539 – 550.en_US
dc.identifier.citedreferenceOrkand, R. K., Nicholls, J. G. & Kuffler, S. W. ( 1966 ). Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. Journal of Neurophysiology 29, 788 – 806.en_US
dc.identifier.citedreferencePuro, D. G., Hwang, J.-J., Kwon, O.-J. & Chin, H. ( 1996 ). Characterization of an L-type calcium channel expressed by human retinal MÜller (glial) cells. Molecular Brain Research 37, 41 – 48.en_US
dc.identifier.citedreferencePuro, D. G. & Mano, T. ( 1991 ). Modulation of calcium channels in human retinal glial cells by basic fibroblast growth factor: a possible role in retinal pathobiology. Journal of Neuroscience 11, 1873 – 1880.en_US
dc.identifier.citedreferencePuro, D. G. & Stuenkel, E. L. ( 1995 ). Thrombin-induced inhibition of potassium currents in human retinal glial (MÜller) cells. The Journal of Physiology 485, 337 – 348.en_US
dc.identifier.citedreferencePuro, D. G., Yuan, J. P. & Sucher, N. J. ( 1996 ). Activation of NMDA receptor-channels in human retinal MÜller glial cells inhibits inward-rectifying potassium currents. Visual Neuroscience 13, 319 – 326.en_US
dc.identifier.citedreferenceRipps, H. & Witkovsky, P. ( 1985 ). Neuron-glia interaction in the brain and retina. Progress in Retinal Research 5, 181 – 220.en_US
dc.identifier.citedreferenceTokumura, A., Iimori, M., Nishioka, Y., Kiahara, M., Sakashita, M. & Tanaka, S. ( 1994 ). Lysophosphatidic acids induce proliferation of cultured vascular smooth muscle cells from rat aorta. American Journal of Physiology 36, C204 – 210.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.