ROLE OF ALUMINUM AND GROWTH RATE ON CHANGES IN CELL SIZE AND SILICA CONTENT OF SILICA-LIMITED POPULATIONS OF ASTERIONELLA RALFSII VAR. AMERICANA (BACILLARIOPHYCEAE) 1
dc.contributor.author | Gensemer, Robert W. | en_US |
dc.date.accessioned | 2010-04-01T15:07:07Z | |
dc.date.available | 2010-04-01T15:07:07Z | |
dc.date.issued | 1990-06 | en_US |
dc.identifier.citation | Gensemer, Robert W . (1990). "ROLE OF ALUMINUM AND GROWTH RATE ON CHANGES IN CELL SIZE AND SILICA CONTENT OF SILICA-LIMITED POPULATIONS OF ASTERIONELLA RALFSII VAR. AMERICANA (BACILLARIOPHYCEAE) 1 ." Journal of Phycology 26(2): 250-258. <http://hdl.handle.net/2027.42/65583> | en_US |
dc.identifier.issn | 0022-3646 | en_US |
dc.identifier.issn | 1529-8817 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/65583 | |
dc.description.abstract | Changes in cell size and silica content were examined in response to aluminum additions in cultures of the acidophilic diatom Asterionella ralfsii var. americana KÖrn at pH 6.0. The effects of Al were examined over a range of steady-state growth rates using silica-limited semicontinuous cultures (Si:P = 8.0). Additions of ≥ 2.8 Μmol · L −1 total Al decreased mean cell length, total surface area, and biovolume up to 40–50%. The effects of Al were dependent on growth rate with the magnitude of size reduction increasing at higher growth rates. The proportion of small (approximately 15–20 Μm) cell length classes increased relative to large (approximately 50 Μm length) cell length classes when total Al exceeded 2.8 Μmol · L −1 , particularly at higher growth rates. The relationship between cell quota and steady-state growth rate fit a Droop relationship at 0 and 2.8 Μmol·L −1 total Al, but this fit was highly variable in the presence of Al. Cell quotas in the 6.22 Μmol·L −1 total Al treatment were highest at low growth rates; therefore, a Droop relationship was an inappropriate descriptor of growth rate. Cells also became 30–40% more heavily silicified per unit surface area in the presence of Al and at growth rates ≥0.22 day −1 . Although the mechanisms responsible for size reductions in response to Al additions are unclear, the relationship between metal concentration and frustule morphology may be useful as an indicator of Al loading to acidified lakes. | en_US |
dc.format.extent | 2299175 bytes | |
dc.format.extent | 3110 bytes | |
dc.format.mimetype | application/octet-stream | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Science Inc | en_US |
dc.rights | 1990, by the Phycological Society of America, Inc. | en_US |
dc.subject.other | Aluminum | en_US |
dc.subject.other | Asterionella Ralfsii Var. Americana | en_US |
dc.subject.other | Cell Quota | en_US |
dc.subject.other | Metals | en_US |
dc.subject.other | Morphology | en_US |
dc.subject.other | Semicontinuous Culture | en_US |
dc.subject.other | Silica | en_US |
dc.subject.other | Silicification | en_US |
dc.subject.other | Si-limitation | en_US |
dc.title | ROLE OF ALUMINUM AND GROWTH RATE ON CHANGES IN CELL SIZE AND SILICA CONTENT OF SILICA-LIMITED POPULATIONS OF ASTERIONELLA RALFSII VAR. AMERICANA (BACILLARIOPHYCEAE) 1 | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Natural Resources and Environment | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Biology, University of Michigan, Ann Arbor, Michigan 48109–1048 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/65583/1/j.0022-3646.1990.00250.x.pdf | |
dc.identifier.doi | 10.1111/j.0022-3646.1990.00250.x | en_US |
dc.identifier.source | Journal of Phycology | en_US |
dc.identifier.citedreference | AndrÉn, C., Henrikson, L., Olsson, M. & Nilson, G. 1988. Effects of pH and aluminum on embryonic and early larval stages of Swedish brown frogs Rana arvalis, R. temporaria, and R. dalmatina. Holarct. Ecol. 11 : 127 – 35. | en_US |
dc.identifier.citedreference | Battarbee, R. W., Smol, J. P. & Merilainen, J. 1986. Diatoms as indicators of pH: An historical review. In Smol, J. P., Battarbee, R. W., Davis, R. B. & Merilainen, J., [ Eds. ] Diatoms and Lake Acidity. Junk Publishers, Dordrecht, pp. 5 – 14. | en_US |
dc.identifier.citedreference | Borowitzka, L. J. & Volcani, B. E. 1977. Role of silicon in diatom metabolism. VIII. Cyclic AMP and cyclic GMP in synchronized cultures of Cylindrotheca fusiformis. Arch Microbiol. 112 : 147 – 52. | en_US |
dc.identifier.citedreference | Burrows, W. D. 1977. Aquatic aluminum: chemistry, toxicology, and environmental prevalence. CRC Crit. Rev. Environ. Control 7 : 167 – 216. | en_US |
dc.identifier.citedreference | Campbell, P. G. C. & Stokes, P. M. 1985. Acidification and toxicity of metals to aquatic biota. Can. J. Fish. Aquat. Sci. 42 : 2034 – 49. | en_US |
dc.identifier.citedreference | Charles, D. F. 1985. Relationships between surface diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology 66 : 994 – 1011. | en_US |
dc.identifier.citedreference | Charles, D. F. & Whitehead, D. R. 1986. The PIRLA project: paleoecological investigations of recent lake acidification. Hydrobiologia 143 : 13 – 20. | en_US |
dc.identifier.citedreference | Charles, D. F., Whitehead, D. R., Engstrom, D. R., Fry, B. D., Hites, R. A., Norton, S. A., Owen, J. S., Roll, L. A., Schindler, S. C., Smol, J. P., Uutala, A. J., White, J. R. & Wise, R. J. 1987. Paleolimnological evidence for recent acidification of Big Moose Lake, Adirondack Mountains, N.Y. (USA). Biogeochemistry 3 : 267 – 96. | en_US |
dc.identifier.citedreference | Claesson, A. & TÖrnqvist, L. 1988. The toxicity of aluminum to two acido-tolerant green algae. Wat. Res. 22 : 977 – 83. | en_US |
dc.identifier.citedreference | Clark, K. L. & LaZerte, B. D. 1985. A laboratory study of the effects of aluminum and pH on amphibian eggs and tadpoles. Can. J. Fish. Aquat. Sci. 42 : 1544 – 51. | en_US |
dc.identifier.citedreference | Clark, K. L. 1987. Intraspecific variation in hydrogen ion and aluminum toxicity in Bufo americanus and Ambystoma maculatum. Can. J. Fish. Aquat. Sci. 44 : 1622 – 8. | en_US |
dc.identifier.citedreference | Conley, D. J., Kilham, S. S. & Theriot, F. 1989. Differences in silica content between marine and freshwater diatoms. Limnol. Oceanogr. 34 : 205 – 13. | en_US |
dc.identifier.citedreference | Crawford, R. M. 1981. The siliceous components of the diatom cell wall and their morphological variation. In Simpson, T. L. & Volcani, B. K., [ Eds. ] Silicon and Siliceous Structures in Biological Systems. Springer Verlag. New York. pp. 129 – 56. | en_US |
dc.identifier.citedreference | Davis, R. B. 1987. Paleolimnological diatom studies of acidification of lakes by acid rain: an application of quaternary-science. Quat. Sci. Rev. 6 : 147 – 63. | en_US |
dc.identifier.citedreference | DeNicola, D. M. 1986. The representation of living diatom communities in deep-water sedimentary diatom assemblages in two Maine (U.S.A.) lakes. In Smol, J. P., Battarbee, R. W., Davis, R. B. & Merilainen, J., [ Eds. ] Diatoms and Lake Acidity. Junk Publishers. Dordrecht, pp. 73 – 85. | en_US |
dc.identifier.citedreference | Dickman, M., Dixit, S., Fortescue, J., Barlow, B. & Terasmae, J. 1984. Diatoms as indicators of the rate of lake acidification. Water Air Soil Pollut. 21 : 375 – 86. | en_US |
dc.identifier.citedreference | Dillon, P. J., Yan, N. D. & Harvey, H. H. 1984. Acidic depoition: Effects on aquatic ecosystems. CRC Crit. Rev. Environ. Control 13 : 167 – 94. | en_US |
dc.identifier.citedreference | Dougan, W. K. & Wilson, A. L. 1974. The absorptiometric determination of aluminum in water. A comparison of some chromogenic reagents and the development of an improved method. Analyst 99 : 413 – 30. | en_US |
dc.identifier.citedreference | Driscoll, C. T., Baker, J. P., Bisogni, J. J. & Schofield, C. L. 1980. Effect of aluminum speciation on fish in dilute acidified waters. Nature (Lond.) 284 : 161 – 4. | en_US |
dc.identifier.citedreference | Driscoll, C. T. 1984. Aluminum speciation and equilibria in dilute acidic surface waters of the Adirondack Region of New York State. In Bricker, O. P., [ Ed. ] Acid Precipitation: Geological Aspects. Ann Arbor Science, Ann Arbor, Michigan, pp. 55 – 75. | en_US |
dc.identifier.citedreference | Driscoll, C.T. & Newton, R. M. 1985. Chemical characteristics of Adirondack lakes. Environ. Sci. Technol. 19 : 1018 – 24. | en_US |
dc.identifier.citedreference | Droop, M. R. 1974. The nutrient status of algal cells in continuous culture. J. Mar. Biol. Assoc. U.K. 54 : 825 – 55. | en_US |
dc.identifier.citedreference | Duthie, H. C. 1989. Diatom-inferred pH history of Kejimkujic Lake, Nova Scotia:a reinterpretation. Water Air Soil Pollut. 46 : 317 – 22. | en_US |
dc.identifier.citedreference | Findlay, D. L. & Kasian, S. E. M. 1986. Phytoplankton community responses to acidification of Lake 223, Experimental Lakes Area, northwestern Ontario. Water An Soil Pollut. 30 : 719 – 26. | en_US |
dc.identifier.citedreference | Flower, R. J. 1986. Two forms of Tabellaria binalis (Ehr.) Grun, in two acid lakes in Galloway, Scotland. In Smol, J. P., Batarbee, R. W., Davis, R. B. & Merilainen, J., [ Eds. ] Diatoms and Lake Acidity. Junk Publishers. Dordrecht, pp. 45 – 54. | en_US |
dc.identifier.citedreference | Folsom, B. R., Popescue, N. A. & Wood, J. M. 1986. Comparative study of aluminum and copper transport and toxicitv in an acid-tolerant freshwater green alga. Environ. Sci. Technol. 20 : 616 – 20. | en_US |
dc.identifier.citedreference | Gensemer, R. W. 1989. Influence of aluminum and pH on the physiologcal ecology and cellular morphology of the acidophilic diatom Asterionella ralfsii var. americana. Ph.D. thesis, The University of Michigan, Ann Arbor, 159 pp. | en_US |
dc.identifier.citedreference | Helliwell, S., Batley, G. E., Florence, T. M. & Lumsden, B. G. 1983. Speciation and toxicity of aluminum in a model freshwater. Environ. Technol. Lett. 4 : 141 – 4. | en_US |
dc.identifier.citedreference | Holm, N. P. & Armstrong, D. E. 1981. Role of nutrient limitation and competition in controlling the populations of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnol. Oceanogr. 26 : 622 – 34. | en_US |
dc.identifier.citedreference | HÖrnstrÖm, E., EkstrÖm, C. & Duraini, M. O. 1984. Effects of pH and different levels of aluminum on lake plankton in the Swedish West Coast area. In Nyman, L. & Ericsson, B., [ Eds. ] Institute of Freshwater Research, Report No. 6l. Drottingholm, Sweden, pp. 115 – 27. | en_US |
dc.identifier.citedreference | Kilham, S. S. 1978. Nutrient kinetics of freshwater planktonic algae using batch and semicontinuous methods. Mitt. Int. Ver. Limnol. 21 : 147 – 57. | en_US |
dc.identifier.citedreference | LaZerte, B. D. 1986. Metals and acidification: an overview. Water Air Soil Pollut. 31 : 596 – 76. | en_US |
dc.identifier.citedreference | LaZerte, B. D., Chun, C. & Evans, D. 1988. Measurement of aqueous aluminum species:comparison of dialysis and ion-exchange techniques. Environ. Sci. Technol. 22 : 1106 – 08. | en_US |
dc.identifier.citedreference | Morel, F. M. M. 1987. Kinetics of nutrient uptake and growth in phytoplankton. J. Phycol. 23 : 137 – 50. | en_US |
dc.identifier.citedreference | Morel, F. M. M., Westall, J. C Rueter, J. G. & Chaplick, J. P. 1975. Description of the Algal Growth Media “Aquil” and “Fraquil.” Technical note No. 16, Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Department of Civil Engineering, Massachusetts Institute of Technology, 33 pp. | en_US |
dc.identifier.citedreference | Paasche, F. 1973. Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) growth in a chemostat with silicate as limiting nutrient. Mar. Biol. (Berl.) 19 : 117 – 26. | en_US |
dc.identifier.citedreference | Paasche, F. 1980. Silicon. In Morris, I., [ Ed. ] Physiological Ecology ofthe Phytoplankton. Black well Scientific, London, pp. 259 – 84. | en_US |
dc.identifier.citedreference | Pillsbury, R. W & Kingston, J. C. 1989. The pH-independent effect of aluminum on cultures of phytoplankton from an acidic Wisconsin lake. Hydrobiologia. In press. | en_US |
dc.identifier.citedreference | Riseng, C. M. 1989. The effect of pH, aluminum, and chelator manipulations on the growth of acidic and circumneutral species of Asterionella. M.S. thesis, University of Michigan, Ann Arbor. 29 pp. | en_US |
dc.identifier.citedreference | SAS Institute, Inc. 1985. SAS User's Guide: Statistics. Version 5 Edition. SAS Institute, Inc., Cary, North Carolina, 956 pp. | en_US |
dc.identifier.citedreference | Schindler, D. W. 1988. Effects of acid rain on freshwater ecosystems. Science (Wash. DC.) 239 : 149 – 57. | en_US |
dc.identifier.citedreference | Schindler, D. W., Mills, K. H., Malley, D. F., Findlay, D. L., Shearer, J. A., Davies, I. J., Turner, M. A., Linsley, G. A. & Cruikshank, D. R. 1985. Long-term ecosystem stress: the effects of years of experimental acidification on a small lake. Science (Wash. D.C.) 28 : 1395 – 401. | en_US |
dc.identifier.citedreference | Seip, H. M., MÜller, L. & Naas, A. 1984. Aluminum speciation: comparison of two spectrophotometric analytical methods and observed concentrations in some acidic aquatic systems in Southern Norway. Water Air Soil Pollut. 23 : 81 – 95. | en_US |
dc.identifier.citedreference | Sicko-Goad, L. & Stoermer, E. F. 1979. A morphometric study of lead and copper effects on Diatoma tenue var. elongatum (Bacillariophyta). J. Phycol. 15 : 316 – 21. | en_US |
dc.identifier.citedreference | Strickland, J. D. H. & Parsons, T. R. 1972. A practical manual of seawater analysis, 2nd ed., Fish. Res. Bd. Can., Ottawa, Bull. 167 : 1 – 311. | en_US |
dc.identifier.citedreference | Sullivan, C. W. & Volcani, B. E. 1981. Silicon in the cellular metabolism of diatoms. In Simpson, T. L. & Volcani, B. E., [ Eds. ] Silicon and Siliceous Structures in Biological Systems. Springer Verlag, New York, pp. 15 – 42. | en_US |
dc.identifier.citedreference | Sullivan, T. J., Seip, H. M. & Muniz, I. P. 1986. A comparison of frequently used methods for the determination of aqueous aluminum. Int. J. Environ. Anal. Chem. 26 : 61 – 75. | en_US |
dc.identifier.citedreference | Taylor, N. J. 1985. Silica incorporation in the diatom Coscinodiscus granii as affected by light intensity. Br. Phycol. J. 20 : 365 – 74. | en_US |
dc.identifier.citedreference | Theriot, E. & Stoermer, E. F. 1984. Principal component analysis of character variation in Stephanodiscus niagare Ehrenb.: morphological variation related to lake trophic status. In Mann, D. G., [ Ed. ] Proceedings of the Seventh International Diatom Symposium. koeltz Scientific Books, Koenigstein, pp. 97 – 111. | en_US |
dc.identifier.citedreference | Tilman, D. 1981. Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62 : 802 – 15. | en_US |
dc.identifier.citedreference | Tilman, D. & Kilham, S. S. 1976. Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. J. Phycol. 12 : 375 – 83. | en_US |
dc.identifier.citedreference | Tilman, D., Kilham, S. S. & Kilham, P. 1976. Morphometric changes in Asterionella formosa colonies under phosphate and silicate limitation. Limnol. Oceanogr. 21 : 883 – 6. | en_US |
dc.identifier.citedreference | Tonolli, L. 1961. La polluzione cuprica del Lago d'Orta: comportamento di alcune popolazioni di Diatomee. Verh. Int. Ver. Limnol. 14 : 900 – 4. | en_US |
dc.identifier.citedreference | TÖrnqvist, L. & Claesson, A. 1987. The influence of aluminum on the cell-size distribution of two green algae. Environ. Exp. Bol. 27 : 481 – 8. | en_US |
dc.identifier.citedreference | Turpin, D. H & Harrison, P. J. 1980. Cell size manipulation in natural marine, planktonic, diatom communities. Can. J. Fish. Aquat. Sci. 37 : 1193 – 5. | en_US |
dc.identifier.citedreference | Volcani, B. E. 1981. Cell wall formation in diatoms: morphogenesis and biochemistry. In Simpson, T. L. & Volcani, B. K., [ Eds. ] Silicon and Siliceous Structures in Biological Systems. Springer Verlag, New York, pp. 157 – 200. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.