Show simple item record

ROLE OF ALUMINUM AND GROWTH RATE ON CHANGES IN CELL SIZE AND SILICA CONTENT OF SILICA-LIMITED POPULATIONS OF ASTERIONELLA RALFSII VAR. AMERICANA (BACILLARIOPHYCEAE) 1

dc.contributor.authorGensemer, Robert W.en_US
dc.date.accessioned2010-04-01T15:07:07Z
dc.date.available2010-04-01T15:07:07Z
dc.date.issued1990-06en_US
dc.identifier.citationGensemer, Robert W . (1990). "ROLE OF ALUMINUM AND GROWTH RATE ON CHANGES IN CELL SIZE AND SILICA CONTENT OF SILICA-LIMITED POPULATIONS OF ASTERIONELLA RALFSII VAR. AMERICANA (BACILLARIOPHYCEAE) 1 ." Journal of Phycology 26(2): 250-258. <http://hdl.handle.net/2027.42/65583>en_US
dc.identifier.issn0022-3646en_US
dc.identifier.issn1529-8817en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65583
dc.description.abstractChanges in cell size and silica content were examined in response to aluminum additions in cultures of the acidophilic diatom Asterionella ralfsii var. americana KÖrn at pH 6.0. The effects of Al were examined over a range of steady-state growth rates using silica-limited semicontinuous cultures (Si:P = 8.0). Additions of ≥ 2.8 Μmol · L −1 total Al decreased mean cell length, total surface area, and biovolume up to 40–50%. The effects of Al were dependent on growth rate with the magnitude of size reduction increasing at higher growth rates. The proportion of small (approximately 15–20 Μm) cell length classes increased relative to large (approximately 50 Μm length) cell length classes when total Al exceeded 2.8 Μmol · L −1 , particularly at higher growth rates. The relationship between cell quota and steady-state growth rate fit a Droop relationship at 0 and 2.8 Μmol·L −1 total Al, but this fit was highly variable in the presence of Al. Cell quotas in the 6.22 Μmol·L −1 total Al treatment were highest at low growth rates; therefore, a Droop relationship was an inappropriate descriptor of growth rate. Cells also became 30–40% more heavily silicified per unit surface area in the presence of Al and at growth rates ≥0.22 day −1 . Although the mechanisms responsible for size reductions in response to Al additions are unclear, the relationship between metal concentration and frustule morphology may be useful as an indicator of Al loading to acidified lakes.en_US
dc.format.extent2299175 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Incen_US
dc.rights1990, by the Phycological Society of America, Inc.en_US
dc.subject.otherAluminumen_US
dc.subject.otherAsterionella Ralfsii Var. Americanaen_US
dc.subject.otherCell Quotaen_US
dc.subject.otherMetalsen_US
dc.subject.otherMorphologyen_US
dc.subject.otherSemicontinuous Cultureen_US
dc.subject.otherSilicaen_US
dc.subject.otherSilicificationen_US
dc.subject.otherSi-limitationen_US
dc.titleROLE OF ALUMINUM AND GROWTH RATE ON CHANGES IN CELL SIZE AND SILICA CONTENT OF SILICA-LIMITED POPULATIONS OF ASTERIONELLA RALFSII VAR. AMERICANA (BACILLARIOPHYCEAE) 1en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biology, University of Michigan, Ann Arbor, Michigan 48109–1048en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65583/1/j.0022-3646.1990.00250.x.pdf
dc.identifier.doi10.1111/j.0022-3646.1990.00250.xen_US
dc.identifier.sourceJournal of Phycologyen_US
dc.identifier.citedreferenceAndrÉn, C., Henrikson, L., Olsson, M. & Nilson, G. 1988. Effects of pH and aluminum on embryonic and early larval stages of Swedish brown frogs Rana arvalis, R. temporaria, and R. dalmatina. Holarct. Ecol. 11 : 127 – 35.en_US
dc.identifier.citedreferenceBattarbee, R. W., Smol, J. P. & Merilainen, J. 1986. Diatoms as indicators of pH: An historical review. In Smol, J. P., Battarbee, R. W., Davis, R. B. & Merilainen, J., [ Eds. ] Diatoms and Lake Acidity. Junk Publishers, Dordrecht, pp. 5 – 14.en_US
dc.identifier.citedreferenceBorowitzka, L. J. & Volcani, B. E. 1977. Role of silicon in diatom metabolism. VIII. Cyclic AMP and cyclic GMP in synchronized cultures of Cylindrotheca fusiformis. Arch Microbiol. 112 : 147 – 52.en_US
dc.identifier.citedreferenceBurrows, W. D. 1977. Aquatic aluminum: chemistry, toxicology, and environmental prevalence. CRC Crit. Rev. Environ. Control 7 : 167 – 216.en_US
dc.identifier.citedreferenceCampbell, P. G. C. & Stokes, P. M. 1985. Acidification and toxicity of metals to aquatic biota. Can. J. Fish. Aquat. Sci. 42 : 2034 – 49.en_US
dc.identifier.citedreferenceCharles, D. F. 1985. Relationships between surface diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology 66 : 994 – 1011.en_US
dc.identifier.citedreferenceCharles, D. F. & Whitehead, D. R. 1986. The PIRLA project: paleoecological investigations of recent lake acidification. Hydrobiologia 143 : 13 – 20.en_US
dc.identifier.citedreferenceCharles, D. F., Whitehead, D. R., Engstrom, D. R., Fry, B. D., Hites, R. A., Norton, S. A., Owen, J. S., Roll, L. A., Schindler, S. C., Smol, J. P., Uutala, A. J., White, J. R. & Wise, R. J. 1987. Paleolimnological evidence for recent acidification of Big Moose Lake, Adirondack Mountains, N.Y. (USA). Biogeochemistry 3 : 267 – 96.en_US
dc.identifier.citedreferenceClaesson, A. & TÖrnqvist, L. 1988. The toxicity of aluminum to two acido-tolerant green algae. Wat. Res. 22 : 977 – 83.en_US
dc.identifier.citedreferenceClark, K. L. & LaZerte, B. D. 1985. A laboratory study of the effects of aluminum and pH on amphibian eggs and tadpoles. Can. J. Fish. Aquat. Sci. 42 : 1544 – 51.en_US
dc.identifier.citedreferenceClark, K. L. 1987. Intraspecific variation in hydrogen ion and aluminum toxicity in Bufo americanus and Ambystoma maculatum. Can. J. Fish. Aquat. Sci. 44 : 1622 – 8.en_US
dc.identifier.citedreferenceConley, D. J., Kilham, S. S. & Theriot, F. 1989. Differences in silica content between marine and freshwater diatoms. Limnol. Oceanogr. 34 : 205 – 13.en_US
dc.identifier.citedreferenceCrawford, R. M. 1981. The siliceous components of the diatom cell wall and their morphological variation. In Simpson, T. L. & Volcani, B. K., [ Eds. ] Silicon and Siliceous Structures in Biological Systems. Springer Verlag. New York. pp. 129 – 56.en_US
dc.identifier.citedreferenceDavis, R. B. 1987. Paleolimnological diatom studies of acidification of lakes by acid rain: an application of quaternary-science. Quat. Sci. Rev. 6 : 147 – 63.en_US
dc.identifier.citedreferenceDeNicola, D. M. 1986. The representation of living diatom communities in deep-water sedimentary diatom assemblages in two Maine (U.S.A.) lakes. In Smol, J. P., Battarbee, R. W., Davis, R. B. & Merilainen, J., [ Eds. ] Diatoms and Lake Acidity. Junk Publishers. Dordrecht, pp. 73 – 85.en_US
dc.identifier.citedreferenceDickman, M., Dixit, S., Fortescue, J., Barlow, B. & Terasmae, J. 1984. Diatoms as indicators of the rate of lake acidification. Water Air Soil Pollut. 21 : 375 – 86.en_US
dc.identifier.citedreferenceDillon, P. J., Yan, N. D. & Harvey, H. H. 1984. Acidic depoition: Effects on aquatic ecosystems. CRC Crit. Rev. Environ. Control 13 : 167 – 94.en_US
dc.identifier.citedreferenceDougan, W. K. & Wilson, A. L. 1974. The absorptiometric determination of aluminum in water. A comparison of some chromogenic reagents and the development of an improved method. Analyst 99 : 413 – 30.en_US
dc.identifier.citedreferenceDriscoll, C. T., Baker, J. P., Bisogni, J. J. & Schofield, C. L. 1980. Effect of aluminum speciation on fish in dilute acidified waters. Nature (Lond.) 284 : 161 – 4.en_US
dc.identifier.citedreferenceDriscoll, C. T. 1984. Aluminum speciation and equilibria in dilute acidic surface waters of the Adirondack Region of New York State. In Bricker, O. P., [ Ed. ] Acid Precipitation: Geological Aspects. Ann Arbor Science, Ann Arbor, Michigan, pp. 55 – 75.en_US
dc.identifier.citedreferenceDriscoll, C.T. & Newton, R. M. 1985. Chemical characteristics of Adirondack lakes. Environ. Sci. Technol. 19 : 1018 – 24.en_US
dc.identifier.citedreferenceDroop, M. R. 1974. The nutrient status of algal cells in continuous culture. J. Mar. Biol. Assoc. U.K. 54 : 825 – 55.en_US
dc.identifier.citedreferenceDuthie, H. C. 1989. Diatom-inferred pH history of Kejimkujic Lake, Nova Scotia:a reinterpretation. Water Air Soil Pollut. 46 : 317 – 22.en_US
dc.identifier.citedreferenceFindlay, D. L. & Kasian, S. E. M. 1986. Phytoplankton community responses to acidification of Lake 223, Experimental Lakes Area, northwestern Ontario. Water An Soil Pollut. 30 : 719 – 26.en_US
dc.identifier.citedreferenceFlower, R. J. 1986. Two forms of Tabellaria binalis (Ehr.) Grun, in two acid lakes in Galloway, Scotland. In Smol, J. P., Batarbee, R. W., Davis, R. B. & Merilainen, J., [ Eds. ] Diatoms and Lake Acidity. Junk Publishers. Dordrecht, pp. 45 – 54.en_US
dc.identifier.citedreferenceFolsom, B. R., Popescue, N. A. & Wood, J. M. 1986. Comparative study of aluminum and copper transport and toxicitv in an acid-tolerant freshwater green alga. Environ. Sci. Technol. 20 : 616 – 20.en_US
dc.identifier.citedreferenceGensemer, R. W. 1989. Influence of aluminum and pH on the physiologcal ecology and cellular morphology of the acidophilic diatom Asterionella ralfsii var. americana. Ph.D. thesis, The University of Michigan, Ann Arbor, 159 pp.en_US
dc.identifier.citedreferenceHelliwell, S., Batley, G. E., Florence, T. M. & Lumsden, B. G. 1983. Speciation and toxicity of aluminum in a model freshwater. Environ. Technol. Lett. 4 : 141 – 4.en_US
dc.identifier.citedreferenceHolm, N. P. & Armstrong, D. E. 1981. Role of nutrient limitation and competition in controlling the populations of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnol. Oceanogr. 26 : 622 – 34.en_US
dc.identifier.citedreferenceHÖrnstrÖm, E., EkstrÖm, C. & Duraini, M. O. 1984. Effects of pH and different levels of aluminum on lake plankton in the Swedish West Coast area. In Nyman, L. & Ericsson, B., [ Eds. ] Institute of Freshwater Research, Report No. 6l. Drottingholm, Sweden, pp. 115 – 27.en_US
dc.identifier.citedreferenceKilham, S. S. 1978. Nutrient kinetics of freshwater planktonic algae using batch and semicontinuous methods. Mitt. Int. Ver. Limnol. 21 : 147 – 57.en_US
dc.identifier.citedreferenceLaZerte, B. D. 1986. Metals and acidification: an overview. Water Air Soil Pollut. 31 : 596 – 76.en_US
dc.identifier.citedreferenceLaZerte, B. D., Chun, C. & Evans, D. 1988. Measurement of aqueous aluminum species:comparison of dialysis and ion-exchange techniques. Environ. Sci. Technol. 22 : 1106 – 08.en_US
dc.identifier.citedreferenceMorel, F. M. M. 1987. Kinetics of nutrient uptake and growth in phytoplankton. J. Phycol. 23 : 137 – 50.en_US
dc.identifier.citedreferenceMorel, F. M. M., Westall, J. C Rueter, J. G. & Chaplick, J. P. 1975. Description of the Algal Growth Media “Aquil” and “Fraquil.” Technical note No. 16, Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Department of Civil Engineering, Massachusetts Institute of Technology, 33 pp.en_US
dc.identifier.citedreferencePaasche, F. 1973. Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) growth in a chemostat with silicate as limiting nutrient. Mar. Biol. (Berl.) 19 : 117 – 26.en_US
dc.identifier.citedreferencePaasche, F. 1980. Silicon. In Morris, I., [ Ed. ] Physiological Ecology ofthe Phytoplankton. Black well Scientific, London, pp. 259 – 84.en_US
dc.identifier.citedreferencePillsbury, R. W & Kingston, J. C. 1989. The pH-independent effect of aluminum on cultures of phytoplankton from an acidic Wisconsin lake. Hydrobiologia. In press.en_US
dc.identifier.citedreferenceRiseng, C. M. 1989. The effect of pH, aluminum, and chelator manipulations on the growth of acidic and circumneutral species of Asterionella. M.S. thesis, University of Michigan, Ann Arbor. 29 pp.en_US
dc.identifier.citedreferenceSAS Institute, Inc. 1985. SAS User's Guide: Statistics. Version 5 Edition. SAS Institute, Inc., Cary, North Carolina, 956 pp.en_US
dc.identifier.citedreferenceSchindler, D. W. 1988. Effects of acid rain on freshwater ecosystems. Science (Wash. DC.) 239 : 149 – 57.en_US
dc.identifier.citedreferenceSchindler, D. W., Mills, K. H., Malley, D. F., Findlay, D. L., Shearer, J. A., Davies, I. J., Turner, M. A., Linsley, G. A. & Cruikshank, D. R. 1985. Long-term ecosystem stress: the effects of years of experimental acidification on a small lake. Science (Wash. D.C.) 28 : 1395 – 401.en_US
dc.identifier.citedreferenceSeip, H. M., MÜller, L. & Naas, A. 1984. Aluminum speciation: comparison of two spectrophotometric analytical methods and observed concentrations in some acidic aquatic systems in Southern Norway. Water Air Soil Pollut. 23 : 81 – 95.en_US
dc.identifier.citedreferenceSicko-Goad, L. & Stoermer, E. F. 1979. A morphometric study of lead and copper effects on Diatoma tenue var. elongatum (Bacillariophyta). J. Phycol. 15 : 316 – 21.en_US
dc.identifier.citedreferenceStrickland, J. D. H. & Parsons, T. R. 1972. A practical manual of seawater analysis, 2nd ed., Fish. Res. Bd. Can., Ottawa, Bull. 167 : 1 – 311.en_US
dc.identifier.citedreferenceSullivan, C. W. & Volcani, B. E. 1981. Silicon in the cellular metabolism of diatoms. In Simpson, T. L. & Volcani, B. E., [ Eds. ] Silicon and Siliceous Structures in Biological Systems. Springer Verlag, New York, pp. 15 – 42.en_US
dc.identifier.citedreferenceSullivan, T. J., Seip, H. M. & Muniz, I. P. 1986. A comparison of frequently used methods for the determination of aqueous aluminum. Int. J. Environ. Anal. Chem. 26 : 61 – 75.en_US
dc.identifier.citedreferenceTaylor, N. J. 1985. Silica incorporation in the diatom Coscinodiscus granii as affected by light intensity. Br. Phycol. J. 20 : 365 – 74.en_US
dc.identifier.citedreferenceTheriot, E. & Stoermer, E. F. 1984. Principal component analysis of character variation in Stephanodiscus niagare Ehrenb.: morphological variation related to lake trophic status. In Mann, D. G., [ Ed. ] Proceedings of the Seventh International Diatom Symposium. koeltz Scientific Books, Koenigstein, pp. 97 – 111.en_US
dc.identifier.citedreferenceTilman, D. 1981. Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62 : 802 – 15.en_US
dc.identifier.citedreferenceTilman, D. & Kilham, S. S. 1976. Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. J. Phycol. 12 : 375 – 83.en_US
dc.identifier.citedreferenceTilman, D., Kilham, S. S. & Kilham, P. 1976. Morphometric changes in Asterionella formosa colonies under phosphate and silicate limitation. Limnol. Oceanogr. 21 : 883 – 6.en_US
dc.identifier.citedreferenceTonolli, L. 1961. La polluzione cuprica del Lago d'Orta: comportamento di alcune popolazioni di Diatomee. Verh. Int. Ver. Limnol. 14 : 900 – 4.en_US
dc.identifier.citedreferenceTÖrnqvist, L. & Claesson, A. 1987. The influence of aluminum on the cell-size distribution of two green algae. Environ. Exp. Bol. 27 : 481 – 8.en_US
dc.identifier.citedreferenceTurpin, D. H & Harrison, P. J. 1980. Cell size manipulation in natural marine, planktonic, diatom communities. Can. J. Fish. Aquat. Sci. 37 : 1193 – 5.en_US
dc.identifier.citedreferenceVolcani, B. E. 1981. Cell wall formation in diatoms: morphogenesis and biochemistry. In Simpson, T. L. & Volcani, B. K., [ Eds. ] Silicon and Siliceous Structures in Biological Systems. Springer Verlag, New York, pp. 157 – 200.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.