Show simple item record

Improved insulin sensitivity after weight loss and exercise training is mediated by a reduction in plasma fatty acid mobilization, not enhanced oxidative capacity

dc.contributor.authorSchenk, Simonen_US
dc.contributor.authorHarber, Matthew P.en_US
dc.contributor.authorShrivastava, Cara R.en_US
dc.contributor.authorBurant, Charles F.en_US
dc.contributor.authorHorowitz, Jeffrey F.en_US
dc.date.accessioned2010-04-01T15:07:24Z
dc.date.available2010-04-01T15:07:24Z
dc.date.issued2009-10-15en_US
dc.identifier.citationSchenk, Simon; Harber, Matthew P.; Shrivastava, Cara R.; Burant, Charles F.; Horowitz, Jeffrey F. (2009). "Improved insulin sensitivity after weight loss and exercise training is mediated by a reduction in plasma fatty acid mobilization, not enhanced oxidative capacity." The Journal of Physiology 587(20): 4949-4961. <http://hdl.handle.net/2027.42/65588>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65588
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19723783&dopt=citationen_US
dc.format.extent513984 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 The Physiological Societyen_US
dc.titleImproved insulin sensitivity after weight loss and exercise training is mediated by a reduction in plasma fatty acid mobilization, not enhanced oxidative capacityen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Kinesiology, University of Michigan, Ann Arbor, MI 48109-2214, USAen_US
dc.contributor.affiliationumDivision of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0678, USAen_US
dc.identifier.pmid19723783en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65588/1/jphysiol.2009.175489.pdf
dc.identifier.doi10.1113/jphysiol.2009.175489en_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceAssali AR, Ganor A, Beigel Y, Shafer Z & Hershcovici T ( 2001 ). Insulin resistance in obesity: body-weight or energy balance. J Endocrinol 171, 293 – 298.en_US
dc.identifier.citedreferenceBajaj M, Suraamornkul S, Romanelli A, Cline GW, Mandarino LJ, Shulman GI & DeFronzo RA ( 2005 ). Effect of a sustained reduction in plasma free fatty acid concentration on intramuscular long-chain fatty Acyl-CoAs and insulin action in type 2 diabetic patients. Diabetes 54, 3148 – 3153.en_US
dc.identifier.citedreferenceBandyopadhyay GK, Yu JG, Ofrecio J & Olefsky JM ( 2005 ). Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes 54, 2351 – 2359.en_US
dc.identifier.citedreferenceBandyopadhyay GK, Yu JG, Ofrecio J & Olefsky JM ( 2006 ). Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. Diabetes 55, 2277 – 2285.en_US
dc.identifier.citedreferenceBerggren JR, Boyle KE, Chapman WH & Houmard JA ( 2008 ). Skeletal muscle lipid oxidation and obesity: influence of weight loss and exercise. Am J Physiol Endocrinol Metab 294, E726 – E732.en_US
dc.identifier.citedreferenceBerggren JR, Hulver MW, Dohm GL & Houmard JA ( 2004 ). Weight loss and exercise: implications for muscle lipid metabolism and insulin action. Med Sci Sprts Exerc 36, 1191 – 1195.en_US
dc.identifier.citedreferenceBergman RN, Prager R, Volund A & Olefsky JM ( 1987 ). Equivalence of the insulin sensitivity index in man derived by the minimal model method and the euglycemic glucose clamp. J Clin Invest 79, 790 – 800.en_US
dc.identifier.citedreferenceBonen A, Parolin ML, Steinberg GR, Calles-Escandon J, Tandon NN, Glatz JF, Luiken JJ, Heigenhauser GJ & Dyck DJ ( 2004 ). Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J 18, 1144 – 1146.en_US
dc.identifier.citedreferenceBoushel R, Gnaiger E, Schjerling P, Skovbro M, KraunsØe R & Dela F ( 2007 ). Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50, 790 – 796.en_US
dc.identifier.citedreferenceBruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, Cooney GJ, Febbraio MA & Kraegen EW ( 2009 ). Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 58, 550 – 558.en_US
dc.identifier.citedreferenceCartee GD, Young DA, Sleeper MD, Zierath J, Wallberg-Henriksson H & Holloszy JO ( 1989 ). Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. Am J Physiol Endocrinol Metab 256, E494 – E499.en_US
dc.identifier.citedreferenceDekker MJ, Lee S, Hudson R, Kilpatrick K, Graham TE, Ross R & Robinson LE ( 2007 ). An exercise intervention without weight loss decreases circulating interleukin-6 in lean and obese men with and without type 2 diabetes mellitus. Metabolism 56, 332 – 338.en_US
dc.identifier.citedreferenceDresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, Slezak LA, Andersen DK, Hundal RS, Rothman DL, Petersen KF & Shulman GI ( 1999 ). Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103, 253 – 259.en_US
dc.identifier.citedreferenceFacchini FS, Hua N, Abbasi F & Reaven GM ( 2001 ). Insulin resistance as a predictor of age-related diseases. J Clin Endocrinol Metab 86, 3574 – 3578.en_US
dc.identifier.citedreferenceFielding BA, Samra JS, Ravell CL & Frayn KN ( 1999 ). Metabolism of individual fatty acids during infusion of a triacylglycerol emulsion. Lipids 34, 535 – 541.en_US
dc.identifier.citedreferenceFrayn KN ( 1983 ). Calculation of substrate oxidation rates in vivo from gas exchange. J Appl Physiol 55, 628 – 634.en_US
dc.identifier.citedreferenceGoodpaster BH, Katsiaras A & Kelley DE ( 2003 ). Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes 52, 2191 – 2197.en_US
dc.identifier.citedreferenceGriffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF & Shulman GI ( 1999 ). Free fatty acid-induced insulin resistance is associates with activation of protein kinase C theta and alterations in the insulin signalling cascade. Diabetes 48, 1270 – 1274.en_US
dc.identifier.citedreferenceHagenfeldt L, Wahren J, Pernow B & Raf L ( 1972 ). Uptake of individual free fatty acids by skeletal muscle and liver in man. J Clin Invest 51, 2324 – 2330.en_US
dc.identifier.citedreferenceHancock CR, Han D-H, Chen M, Terada S, Yasuda T, Wright DC & Holloszy JO ( 2008 ). High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci U S A 105, 7815 – 7820.en_US
dc.identifier.citedreferenceHirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M & Hotamisligil GS ( 2002 ). A central role for JNK in obesity and insulin resistance. Nature 420, 333 – 336.en_US
dc.identifier.citedreferenceHorowitz JF, Braudy RJ, Martin WH & Klein S ( 1999 a ). Endurance exercise training does not alter lipolytic or adipose tissue blood flow sensitivity to epinephrine. Am J Physiol Endocrinol Metab 277, E325 – E331.en_US
dc.identifier.citedreferenceHorowitz JF, Coppack SW, Paramore D, Cryer PE, Zhao G & Klein S ( 1999 b ). Effect of short-term fasting on lipid kinetics in lean and obese women. Am J Physiol Endocrinol Metab 276, E278 – E284.en_US
dc.identifier.citedreferenceHorowitz JF, Leone TC, Feng W, Kelly DP & Klein S ( 2000 ). Effect of endurance training on lipid metabolism in women: a potential role for PPARa in the metabolic response to training. Am J Physiol Endocrinol Metab 279, E348 – E355.en_US
dc.identifier.citedreferenceHulver MW, Berggren JR, Cortright RN, Dudek RW, Thompson RP, Pories WJ, MacDonald KG, Cline GW, Shulman GI, Dohm GL & Houmard JA ( 2003 ). Skeletal muscle lipid metabolism with obesity. Am J Physiol Endocrinol Metab 284, E741 – E747.en_US
dc.identifier.citedreferenceItani SI, Ruderman NB, Schmieder F & Boden G ( 2002 ). Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IΚB-Α. Diabetes 51, 2005 – 2011.en_US
dc.identifier.citedreferenceIvy JL, Young JC, McLane JA, Fell RD & Holloszy JO ( 1983 ). Exercise training and glucose uptake by skeletal muscle in rats. J Appl Physiol 55, 1393 – 1396.en_US
dc.identifier.citedreferenceJanssen I, Fortier A, Hudson R & Ross R ( 2002 ). Effects of an energy-restrictive diet with or without exercise on abdominal fat, intermuscular fat, and metabolic risk factors in obese women. Diabetes Care 25, 431 – 438.en_US
dc.identifier.citedreferenceKanaley JA, Cryer PE & Jensen MD ( 1993 ). Fatty acid kinetic responses to exercise. Effects of obesity, body fat distribution, and energy-restricted diet. J Clin Invest 92, 255 – 261.en_US
dc.identifier.citedreferenceKim JY, Hickner RC, Cortright RL, Dohm GL & Houmard JA ( 2000 ). Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 279, E1039 – E1044.en_US
dc.identifier.citedreferenceKlein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW & Mohammed BS ( 2004 ). Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med 350, 2549 – 2557.en_US
dc.identifier.citedreferenceKlein S, Luu K, Gasic S & Green A ( 1996 ). Effect of weight loss on whole body and cellular lipid metabolism in severely obese humans. Am J Physiol Endocrinol Metab 270, E739 – E745.en_US
dc.identifier.citedreferenceKoves TR, Li P, An J, Akimoto T, Slentz D, Ilkayeva O, Dohm GL, Yan Z, Newgard CB & Muoio DM ( 2005 ). Peroxisome proliferator-activated receptor-Γ co-activator 1Α-mediated metabolic remodelling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem 280, 33588 – 33598.en_US
dc.identifier.citedreferenceLofgren P, Hoffstedt J, Ryden M, Thorne A, Holm C, Wahrenberg H & Arner P ( 2002 ). Major gender differences in the lipolytic capacity of abdominal subcutaneaous fat cells in obesity observed before and after long-term weight reduction. J Clin Endocrinol Metab 87, 764 – 771.en_US
dc.identifier.citedreferenceMatzinger O, Schneiter P & Tappy L ( 2002 ). Effects of fatty acids on exercise plus insulin-induced glucose utilization in trained and sedentary subjects. Am J Physiol Endocrinol Metab 282, E125 – E131.en_US
dc.identifier.citedreferenceMikines KJ, Sonne B, Farrell PA, Tronier B & Galbo H ( 1988 ). Effects of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol Endocrinol Metab 254, E248 – E259.en_US
dc.identifier.citedreferenceMikines KJ, Sonne B, Tronier B & Galbo H ( 1989 ). Effects of acute exercise and detraining on insulin action in trained men. J Appl Physiol 66, 704 – 711.en_US
dc.identifier.citedreferenceMittendorfer B, Liem O, Patterson BW, Miles JM & Klein S ( 2003 ). What does the measurement of whole-body fatty acid rate of appearance in plasma by using a fatty acid tracer really mean? Diabetes 52, 1641 – 1648.en_US
dc.identifier.citedreferenceNair KS, Bigelow ML, Asmann YW, Chow LS, Coenen-Schimke JM, Klaus KA, Guo Z-K, Sreekumar R & Irving BA ( 2008 ). Asian indians have enhanced skeletal muscle mitochondrial capacity to produce ATP in association with severe insulin resistance. Diabetes 57, 1166 – 1175.en_US
dc.identifier.citedreferenceNguyen MTA, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, Zalevsky J, Dahiyat BI, Chi N-W & Olefsky JM ( 2005 ). JNK and tumor necrosis factor-Α mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 280, 35361 – 35371.en_US
dc.identifier.citedreferenceOstergard T, Andersen JL, Nyholm B, Lund S, Nair KS, Saltin B & Schmitz O ( 2006 ). Impact of exercise training on insulin sensitivity, physical fitness, and muscle oxidative capacity in first-degree relatives of type 2 diabetic patients. Am J Physiol Endocrinol Metab 290, E998 – E1005.en_US
dc.identifier.citedreferencePatterson BW, Zhao G & Klein S ( 1998 ). Improved accuracy of stable isotope tracer:tracee ratio measurements by gas chromotography/mass spectrometry. Metabolism 47, 706 – 712.en_US
dc.identifier.citedreferencePerseghin G, Price TB, Petersen KF, Roden M, Cline GW, Gerow K, Rothman DL & Shulman GI ( 1996 ). Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med 335, 1357 – 1362.en_US
dc.identifier.citedreferencePetersen KF, Dufour S, Befroy D, Garcia R & Shulman GI ( 2004 ). Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350, 664 – 671.en_US
dc.identifier.citedreferenceRoden M, Stingl H, Chandramouli V, Schumann WC, Hofer A, Landau BR, Nowotny P, Waldhausl W & Shulman GI ( 2000 ). Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes 49, 701 – 707.en_US
dc.identifier.citedreferenceRopelle ER, Pauli JR, Prada PO, de Souza CT, Picardi PK, Faria MC, Cintra DE, Fernandes MFdA, Flores MB, Velloso LA, Saad MJA & Carvalheira JBC ( 2006 ). Reversal of diet-induced insulin resistance with a single bout of exercise in the rat: the role of PTP1B and IRS-1 serine phosphorylation. J Physiol 577, 997 – 1007.en_US
dc.identifier.citedreferenceRoss R, Dagnone D, Jones PJ, Smith H, Paddags A, Hudson R & Janssen I ( 2000 ). Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med 133, 92 – 103.en_US
dc.identifier.citedreferenceRoss R, Janssen I, Dawson J, Kungl AM, Kuk JL, Wong SL, Nguyen-Duy TB, Lee S, Kilpatrick K & Hudson R ( 2004 ). Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes Res 12, 789 – 798.en_US
dc.identifier.citedreferenceSaad MF, Anderson RL, Laws A, Watanabe RM, Kades WW, Chen YD, Sands RE, Pei D, Savage PJ & Bergman RN ( 1994 ). A comparison between the minimal model and the glucose clamp in the assessment of insulin sensitivity across the spectrum of glucose tolerance. Insulin Resistance Atherosclerosis Study. Diabetes 43, 1114 – 1121.en_US
dc.identifier.citedreferenceSantomauro A, Boden G, Silva M, Rocha D, Santos R, Ursich M, Strassmann P & Wajchenberg B ( 1999 ). Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes 48, 1836 – 1841.en_US
dc.identifier.citedreferenceSavage DB, Petersen KF & Shulman GI ( 2007 ). Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 87, 507 – 520.en_US
dc.identifier.citedreferenceSchenk S, Cook JN, Kaufman AE & Horowitz JF ( 2005 ). Postexercise insulin sensitivity is not impaired after an overnight lipid infusion. Am J Physiol Endocrinol Metab 288, E519 – E525.en_US
dc.identifier.citedreferenceSchenk S & Horowitz JF ( 2006 ). Co-immunoprecipitation of FAT/CD36 and CPT-I in skeletal muscle increases proportionally with fat oxidation after endurance exercise training. Am J Physiol Endocrinol Metab 291, E254 – E260.en_US
dc.identifier.citedreferenceSchenk S & Horowitz JF ( 2007 ). Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest 117, 1679 – 1689.en_US
dc.identifier.citedreferenceSchenk S, Saberi M & Olefsky JM ( 2008 ). Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 118, 2992 – 3002.en_US
dc.identifier.citedreferenceSidossis LS, Coggan AR, Gastaldelli A & Wolfe RR ( 1995 ). A new correction factor for use in tracer estimations of plasma fatty acid oxidation. Am J Physiol Endocrinol Metab 269, E649 – E656.en_US
dc.identifier.citedreferenceSinha S, Perdomo G, Brown NF & O’Doherty RM ( 2004 ). Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor ΚB. J Biol Chem 279, 41294 – 41301.en_US
dc.identifier.citedreferenceSriwijitkamol A, Christ-Roberts C, Berria R, Eagan P, Pratipanawatr T, Defronzo RA, Mandarino LJ & Musi N ( 2006 ). Reduced skeletal muscle inhibitor of ΚbΒ content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training. Diabetes 55, 760 – 767.en_US
dc.identifier.citedreferenceSteele R ( 1959 ). Influences of glucose loading and of injected insulin on hepatic glucose output. Ann NY Acad Sci 82, 420 – 430.en_US
dc.identifier.citedreferenceThyfault JP, Kraus RM, Hickner RC, Howell AW, Wolfe RR & Dohm GL ( 2004 ). Impaired plasma fatty acid oxidation in extremely obese women. Am J Physiol Endocrinol Metab 287, E1076 – E1081.en_US
dc.identifier.citedreferenceToledo FGS, Menshikova EV, Azuma K, Radikova Z, Kelley CA, Ritov VB & Kelley DE ( 2008 ). Mitochondrial capacity in skeletal muscle is not stimulated by weight loss, despite increases in insulin action and decreases in intramyocellular lipid content. Diabetes 57, 987 – 994.en_US
dc.identifier.citedreferenceToledo FGS, Menshikova EV, Ritov VB, Azuma K, Radikova Z, DeLany J & Kelley DE ( 2007 ). Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes 56, 2142 – 2147.en_US
dc.identifier.citedreferenceTurner N, Bruce CR, Beale SM, Hoehn KL, So T, Rolph MS & Cooney GJ ( 2007 ). Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56, 2085 – 2092.en_US
dc.identifier.citedreferenceVazquez JA & Kazi U ( 1994 ). Lipolysis and gluconeogenesis from glycerol during weight reduction with very-low-calorie diets. Metabolism 43, 1293 – 1299.en_US
dc.identifier.citedreferenceWolfe RR ( 1992 ). Radioactive and Stable Isotope Tracers in Biomedicine: Principles and Practice of Kinetic Analysis. Wiley-Liss, New York.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.