Show simple item record

Enhanced antinociceptive response to intracerebroventricular kyotorphin in Pept2 null mice

dc.contributor.authorJiang, Huidien_US
dc.contributor.authorHu, Yongjunen_US
dc.contributor.authorKeep, Richard F.en_US
dc.contributor.authorSmith, David E.en_US
dc.date.accessioned2010-04-01T15:07:28Z
dc.date.available2010-04-01T15:07:28Z
dc.date.issued2009-06en_US
dc.identifier.citationJiang, Huidi; Hu, Yongjun; Keep, Richard F.; Smith, David E. (2009). "Enhanced antinociceptive response to intracerebroventricular kyotorphin in Pept2 null mice." Journal of Neurochemistry 109(5): 1536-1543. <http://hdl.handle.net/2027.42/65589>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65589
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19383084&dopt=citationen_US
dc.format.extent451581 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 International Society for Neurochemistryen_US
dc.subject.otherAminopeptidaseen_US
dc.subject.otherAntinociceptionen_US
dc.subject.otherIntracerebroventricularen_US
dc.subject.otherKyotorphinen_US
dc.subject.otherPept2en_US
dc.subject.otherKnockout Miceen_US
dc.titleEnhanced antinociceptive response to intracerebroventricular kyotorphin in Pept2 null miceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationum† Departments of Neurosurgery and Physiology, Medical School, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother† College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, Chinaen_US
dc.identifier.pmid19383084en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65589/1/j.1471-4159.2009.06090.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2009.06090.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAkasaki K., Nakamura A., Shiomi H. and Tsuji H. ( 1991 ) Identification and characterization of two distinct kyotorphin-hydrolyzing enzymes in rat brain. Neuropeptides 20, 103 – 107.en_US
dc.identifier.citedreferenceBrandsch M., KnÜtter I. and Bosse-Doenecke E. ( 2008 ) Pharmaceutical and pharmacological importance of peptide transporters. J. Pharm. Pharmacol. 60, 543 – 585.en_US
dc.identifier.citedreferenceDaniel H. and Kottra G. ( 2004 ) The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. PflÜgers Arch. 447, 610 – 618.en_US
dc.identifier.citedreferenceDavis T. P. and Konings P. N. ( 1993 ) Peptidases in the CNS: formation of biologically active, receptor-specific peptide fragments. Crit. Rev. Neurobiol. 7, 163 – 174.en_US
dc.identifier.citedreferenceFujita T., Kishida T., Okada N., Ganapathy V., Leibach F. H. and Yamamoto A. ( 1999 ) Interaction of kyotorphin and brain peptide transporter in synaptosomes prepared from rat cerebellum: implication of high affinity type H + /peptide transporter PEPT2 mediated transport system. Neurosci. Lett. 271, 117 – 120.en_US
dc.identifier.citedreferenceFujita T., Kishida T., Wada M., Okada N., Yamamoto A., Leibach F. H. and Ganapathy V. ( 2004 ) Functional characterization of brain peptide transporter in rat cerebral cortex: identification of the high-affinity type H + /peptide transporter PEPT2. Brain Res. 997, 52 – 61.en_US
dc.identifier.citedreferenceHu Y., Ocheltree S. M., Xiang J., Keep R. F. and Smith D. E. ( 2005 ) Glycyl-L-glutamine disposition in rat choroid plexus epithelial cells in primary culture: role of PEPT2. Pharm. Res. 22, 1281 – 1286.en_US
dc.identifier.citedreferenceHu Y., Shen H., Keep R. F. and Smith D. E. ( 2007 ) Peptide transporter 2 (PEPT2) expression in brain protects against 5-aminolevulinic acid neurotoxicity. J. Neurochem. 103, 2058 – 2065.en_US
dc.identifier.citedreferenceIkeda T., Waldbillig R. J. and Puro D. G. ( 1995 ) Truncation of IGF-1 yields two mitogens for retinal MÜller glial cells. Brain Res. 686, 87 – 92.en_US
dc.identifier.citedreferenceMargolis F. L., Grillo M., Hempstead J. and Morgan J. I. ( 1987 ) Monoclonal antibodies to mammalian carnosine synthetase. J. Neurochem. 48, 593 – 600.en_US
dc.identifier.citedreferenceMatsubayashi K., Kojima C., Kawajiri S., Ono K., Takegoshi T., Ueda H. and Takagi H. ( 1984 ) Hydrolytic deactivation of kyotorphin by the rodent brain homogenates and sera. J. Pharmacobiodyn. 7, 479 – 484.en_US
dc.identifier.citedreferenceMatsushita H., Suzuki H., Sugiyama Y., Sawada Y., Iga T., Kawaguchi Y. and Hanano M. ( 1991 ) Facilitated transport of cefodizime into the rat central nervous system. J. Pharmacol. Exp. Ther. 259, 620 – 625.en_US
dc.identifier.citedreferenceNishimura K., Kaya K., Hazato T., Ueda H., Satoh M. and Takagi H. ( 1991 ) Kyotorphin like substance in human cerebrospinal fluid of patients with persistent pain. Masui 40, 1686 – 1690.en_US
dc.identifier.citedreferenceNyberg F. and Hallberg M. ( 2007 ) Peptide conversion – a potential pathway modulating G-protein signaling. Curr. Drug Targets 8, 147 – 154.en_US
dc.identifier.citedreferenceOcheltree S. M., Shen H., Hu Y., Keep R. F. and Smith D. E. ( 2005 ) Role and relevance of peptide transporter 2 (PEPT2) in the kidney and choroid plexus: in vivo studies with glycylsarcosine in wild-type and PEPT2 knockout mice. J. Pharmacol. Exp. Ther. 315, 240 – 247.en_US
dc.identifier.citedreferenceRubio-Aliaga I. and Daniel H. ( 2008 ) Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica 38, 1022 – 1042.en_US
dc.identifier.citedreferenceRudick R. A., Zirretta D. K. and Herndon R. M. ( 1982 ) Clearance of albumin from mouse subarachnoid space: a measure of CSF bulk flow. J. Neurosci. Methods 6, 253 – 259.en_US
dc.identifier.citedreferenceShen H., Smith D. E., Yang T., Huang Y. G., Schnermann J. B. and Brosius III F. C. ( 1999 ) Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney. Am. J. Physiol. 276, F658 – F665.en_US
dc.identifier.citedreferenceShen H., Smith D. E., Keep R. F., Xiang J. and Brosius III F. C. ( 2003 ) Targeted disruption of the PEPT2 gene markedly reduces dipeptide uptake in choroid plexus. J. Biol. Chem. 278, 4786 – 4791.en_US
dc.identifier.citedreferenceShen H., Smith D. E., Keep R. F. and Brosius III F. C. ( 2004 ) Immunolocalization of the proton-coupled oligopeptide transporter PEPT2 in developing rat brain. Mol. Pharm. 1, 248 – 256.en_US
dc.identifier.citedreferenceShen H., Ocheltree S. M., Hu Y., Keep R. F. and Smith D. E. ( 2007 ) Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice. Drug Metab. Dispos. 35, 1209 – 1216.en_US
dc.identifier.citedreferenceSmith D. E., Johanson C. E. and Keep R. F. ( 2004 ) Peptide and peptide analog transport systems at the blood-CSF barrier. Adv. Drug Deliv. Rev. 56, 1765 – 1791.en_US
dc.identifier.citedreferenceSuzuki H., Sawada Y., Sugiyama Y., Iga T., Hanano M. and Spector R. ( 1989 ) Transport of imipenem, a novel carbapenem antibiotic, in the rat central nervous system. J. Pharmacol. Exp. Ther. 250, 979 – 984.en_US
dc.identifier.citedreferenceTakagi H., Shiomi H., Ueda H. and Amano H. ( 1979a ) A novel analgesic dipeptide from bovine brain is a possible Met-enkephalin releaser. Nature 282, 410 – 412.en_US
dc.identifier.citedreferenceTakagi H., Shiomi H., Ueda H. and Amano H. ( 1979b ) Morphine-like analgesia by a new dipeptide, L-tyrosyl-L-arginine (kyotorphin) and its analogue. Eur. J. Pharmacol. 55, 109 – 111.en_US
dc.identifier.citedreferenceTerada T., Sawada K., Irie M., Saito H., Hashimoto Y. and Inui K-I. ( 2000 ) Structural requirements for determining the substrate affinity of peptide transporters PEPT1 and PEPT2. PflÜgers Arch. 440, 679 – 684.en_US
dc.identifier.citedreferenceTeuscher N. S., Keep R. F. and Smith D. E. ( 2001 ) PEPT2-mediated uptake of neuropeptides in rat choroid plexus. Pharm. Res. 18, 807 – 813.en_US
dc.identifier.citedreferenceTeuscher N. S., Shen H., Shu C., Xiang J., Keep R. F. and Smith D. E. ( 2004 ) Carnosine uptake in rat choroid plexus primary cell cultures and choroid plexus whole tissue from PEPT2 null mice. J. Neurochem. 89, 375 – 382.en_US
dc.identifier.citedreferenceThakkar S. V., Miyauchi S., Prasad P. D. and Ganapathy V. ( 2008 ) Stimulation of Na + /Cl - -coupled opioid peptide transport system in SK-N-SH cells by L-kyotorphin, an endogenous substrate for H + -coupled peptide transporter PEPT2. Drug Metab. Pharmacokinet. 23, 254 – 262.en_US
dc.identifier.citedreferenceTzingounis A. V. and Wadiche J. I. ( 2007 ) Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Neuroscience 8, 935 – 947.en_US
dc.identifier.citedreferenceUeda H. and Inoue M. ( 2000 ) In vivo signal transduction of nociceptive response by kyotorphin (tyrosine-arginine) through Gα i - and inositol triphosphate-mediated Ca 2+ influx. Mol. Pharmacol. 57, 108 – 115.en_US
dc.identifier.citedreferenceUeda H., Tatsumi K., Shiomi H. and Takagi H. ( 1982 ) Analgesic dipeptide, kyotorphin (Tyr-Arg), is highly concentrated in the synaptosomal fraction of the rat brain. Brain Res. 231, 222 – 224.en_US
dc.identifier.citedreferenceUeda H., Ming G., Hazato T., Katayama T. and Takagi H. ( 1985 ) Degradation of kyotorphin by a purified membrane-bound-aminopeptidase from monkey brain: potentiation of kyotorphin-induced analgesia by a highly effective inhibitor, bestatin. Life Sci. 36, 1865 – 1871.en_US
dc.identifier.citedreferenceUeda H., Yoshihara Y., Fukushima N., Shiomi H., Nakamura A. and Takagi H. ( 1987 ) Kyotorphin (tyrosine-arginine) synthetase in rat brain synaptosomes. J. Biol. Chem. 262, 8165 – 8173.en_US
dc.identifier.citedreferenceYamashita T., Shimada S., Guo W., Sato K., Kohmura E., Hayakawa T., Takagi T. and Tohyama M. ( 1997 ) Cloning and functional expression of a brain peptide/histidine transporter. J. Biol. Chem. 272, 10205 – 10211.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.