Show simple item record

TEMPERATURE EFFECTS ON SILICON- AND PHOSPHORUS-LIMITED GROWTH AND COMPETITIVE INTERACTIONS AMONG THREE DIATOMS 1

dc.contributor.authorDonk, Ellenen_US
dc.contributor.authorKilham, Susan Soltauen_US
dc.date.accessioned2010-04-01T15:07:41Z
dc.date.available2010-04-01T15:07:41Z
dc.date.issued1990-03en_US
dc.identifier.citationDonk, Ellen; Kilham, Susan Soltau (1990). "TEMPERATURE EFFECTS ON SILICON- AND PHOSPHORUS-LIMITED GROWTH AND COMPETITIVE INTERACTIONS AMONG THREE DIATOMS 1 ." Journal of Phycology 26(1): 40-50. <http://hdl.handle.net/2027.42/65593>en_US
dc.identifier.issn0022-3646en_US
dc.identifier.issn1529-8817en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65593
dc.description.abstractThree diatom species, Stephanodiscus hantzschii (Ehr.) Grun., Asterionella formosa Hass. and Fragilaria crotonensis Kitt. Hass. were isolated from Lake Maarsseveen where they are dominant and show a successional sequence. The physiological responses of each species to temperature and limitation by silicon and phosphorus were determined over the temperature range of 5° to 20° C using short-term batch culture methods. Stephanodiscus hantzschii had higher maximum growth rates than the other two species at all temperatures, and the maximum growth rates of all species increased with increasing temperature. Temperature affected not only maximum growth rates but also half-saturation constants (K s ) and the minimum cell quotas. S. hantzschii had low silicon requirements for growth under Si-limiting conditions, and A. formosa and F. crotonensis had higher and nearly identical silicon requirements. The K s values for silicon for S. hantzschii were essentially constant from 5° to 20° C but varied greatly for the other two species. A. formosa had the lowest requirements for growth under phosphorus limitation, F. crotonensis was intermediate and S. hantzschii had the highest growth requirements for phosphorus. The K 1 values for phosphorus were constant over the temperature range for both A. formosa and F. crotonensis and were much higher and variable for S. hantzschii . Nutrient competition experiments were performed in continuous cultures at four temperatures and various Si:P ratios. The results generally, but not always, confirmed the predictions based on the Monod relationships for each species. Results not in agreement with predictions were usually because of similar physiological properties of A. formosa and F. crotonensis or because of decreased loss rates for F. crotonensis due to wall growth. In cultures with all three species phosphorus-limited (Si:P > 75), A. formosa often dominated as predicted, although F. crotonensis was sometimes the most abundant species. As predicted, S. hantzschii never dominated at high Si:P ratios. At intermediate Si:P ratios when A. formosa and F. crotonensis were both Si-limited and S. hantzschii P-limited, all three species coexisted because A. formosa and F. crotonensis have almost identical silicon requirements, although sometimes F. crotonensis was more abundant than predicted. At 10°C the results agreed best with the predictions; A. formosa dominated at high Si:P ratios and S. hantzschii dominated as predicted at low Si:P ratios when all three species were Si-limited.en_US
dc.format.extent3830796 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Incen_US
dc.rights1990, by the Phycological Society of America, Inc.en_US
dc.subject.otherAsterionella Formosaen_US
dc.subject.otherCell Quotaen_US
dc.subject.otherCompetitionen_US
dc.subject.otherDiatomsen_US
dc.subject.otherFragilaria Crotonensisen_US
dc.subject.otherGrowth Kineticsen_US
dc.subject.otherPhosphorusen_US
dc.subject.otherSiliconen_US
dc.subject.otherStephanodiscus Hantzschiien_US
dc.titleTEMPERATURE EFFECTS ON SILICON- AND PHOSPHORUS-LIMITED GROWTH AND COMPETITIVE INTERACTIONS AMONG THREE DIATOMS 1en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biology, The University of Michigan, Ann Arbor, Michigan 48109-1048en_US
dc.contributor.affiliationotherDepartment of Aquatic Ecology, University of Amsterdam, Kruislann 320, 1098 SM Amsterdam, The Netherlandsen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65593/1/j.0022-3646.1990.00040.x.pdf
dc.identifier.doi10.1111/j.0022-3646.1990.00040.xen_US
dc.identifier.sourceJournal of Phycologyen_US
dc.identifier.citedreferenceAhlgren, G. 1978. Growth of Oscillatoria agardhii in chemostat culture. Dependence of growth constants on temperature. Mitt. Int. Ver. Theor. Angew. Limnol. 21 : 88 – 102.en_US
dc.identifier.citedreferenceAhlgren, G. 1987. Temperature functions in biology and their application to algal growth constants. Oikos 49 : 177 – 90.en_US
dc.identifier.citedreferenceBrand, L. E., Guillard, R. R. L. & Murphy, L. S. 1981. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J. Plankton Res. 3 : 193 – 201.en_US
dc.identifier.citedreferenceCanter, H. M. 1973. A new primitive protozoan devouring centric diatoms in the plankton. J. Linn. Soc. Zool. 52 : 63 – 82.en_US
dc.identifier.citedreferenceDorgelo, J. & de Graaf Bierbrauwer, J. M. 1981. Phytoplankton in Lake Maarsseveen I (1977–1979). Hydrobiol. Bull. 15 : 29 – 40.en_US
dc.identifier.citedreferenceDorgelo, J., van Donk, K. & de Graaf Bierbrauwer, J. M. 1981. The late winter/spring bloom and succession of diatoms during lour years in Lake Maarsseveen (The Netherlands). Int. Ver. Theor. Angew. Limnol. Verh. 21 : 938 – 47.en_US
dc.identifier.citedreferenceEppley, R. W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70 : 1063 – 85.en_US
dc.identifier.citedreferenceGoldman, J. C. 1979. Temperature effects on steady state growth, phosphorus uptake, and chemical composition of a marine phytoplankter. Microb. Ecol. 5 : 153 – 60.en_US
dc.identifier.citedreferenceGotham, I. J. & Rhee, G-Y. 1981. Comparative kinetic studies of phosphate-limited growth and phosphorus uptake in phytoplankton in continuous culture. J. Phycol. 17 : 257 – 65.en_US
dc.identifier.citedreferenceGuillard, R. R. L. 1973. Methods for microflagellates and nannoplankton. In Stein, J. R. [ Ed. ] logical Methods, Culture Methods and Growth Measuremeles. Cambridge University Press, New York, pp. 69 – 85.en_US
dc.identifier.citedreferenceGuillard, R. R. L. 1975. Culture of phytoplankton for feeding marine invertebrates. In Smith, W. L. & Chanley, M. H. [ Eds. ] Culture of Marine Invertebrate Animals. Plenum Press, New York, pp. 29 – 68.en_US
dc.identifier.citedreferenceGuillard, R. R. L., Kilham, P. & Jackson, T. A. 1973. Kinetics of silicon-limited growth in the marine diatom Thalassiosira pseudonana Hasle and Heimdal (= Cyclotella nana Hustedt). J. Phycol. 9 : 233 – 7.en_US
dc.identifier.citedreferenceHealey, F. P. 1980. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb. Ecol. 5 : 281 – 6.en_US
dc.identifier.citedreferenceHolm, N. P. & Armstrong, D. E. 1981. Role of nutrient limitation and competition in controlling the population of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnol. Oceanogr. 26 : 622 – 34.en_US
dc.identifier.citedreferenceKilham, P. 1971. A hypothesis concerning silica and the freshwater planktonic diatoms. Limnol. Oceanogr. 16 : 10 – 8.en_US
dc.identifier.citedreferenceKilham, P., Kilham, S. S. & Hecky, R. E. 1980. Hypothesized resource relationships among African planktonic diatoms. Limnol. Oceanogr. 31 : 1167 – 79.en_US
dc.identifier.citedreferenceKilham, S. S. 1975. Nutrient kinetics of freshwater planktonic algae using batch and semicontinuous methods. Mill. Int. Theor. Angew. Limnol. 21 : 147 – 57.en_US
dc.identifier.citedreferenceKilham, S. S. 1984. Silicon and phosphorus growth kinetics and competitive interactions between Stephanodiscus minutus and Synedra sp. Verh. Int. Ver. Theor. Angew. Limnol. 22 : 435 – 9.en_US
dc.identifier.citedreferenceKilham, S. S. 1986. Dynamics of Lake Michigan phytoplankton communities in continuous cultures along a Si:P loading gradient. Can. J. Fish. Aquat. Sci. 43 : 351 – 60.en_US
dc.identifier.citedreferenceKilham, S. S. 1988. Phytoplankton responses to changes in mortality rate. Verh. Int. Ver. Theor. Angew. Limnol. 23 : 677 – 84.en_US
dc.identifier.citedreferenceKlaveness, D. & Guillard, R. R. L. 1975. The requirement for silicon in Synura petersenii (Chrysophyceae). J. Phycol. 11 : 349 – 55.en_US
dc.identifier.citedreferenceMechling, J. A. & Kilham, S. S. 1982. Temperature effects on silicon limited growth of the Lake Michigan diatom Stephanodiscus minutus (Bacillariophyceae). J. Phycol. 18 : 199 – 205.en_US
dc.identifier.citedreferenceO'Brien, W. J. 1974. The dynamics of nutrient limitation of phytoplankton algae: a model reconsidered. Ecology 55 : 135 – 41.en_US
dc.identifier.citedreferencePaasche, E. 1975. Growth of the plankton diatom Thalassiosira nordenskioeldii Cleve at low silicate concentrations. J. Exp. Mar. Biol. 18 : 173 – 83.en_US
dc.identifier.citedreferenceReynolds, J. H., Middlebrook, E. J., Porella, D. B. & Grenney, W. J. 1975. Effects of temperature on growth constants of Selenastrum capricornutum. J. Water Pollut. Cant. Fed. 47 : 2420 – 36.en_US
dc.identifier.citedreferenceRhee, G-Y. 1982. Effects of environmental factors and their interactions on phytoplankton growth. In Marshall, K. C. [ Ed. ] Advances in Microbial Ecology. Vol. 6. Plenum Press. New-York, pp. 33 – 74.en_US
dc.identifier.citedreferenceRhee, G-Y. & Gotham, I. J. 1980. Optimum N:P ratios and coexistence in phytoplankton. J. Phycol. 16 : 486 – 9.en_US
dc.identifier.citedreferenceRhee, G-Y. & Gotham, I. J. 1981. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 26 : 635 – 48.en_US
dc.identifier.citedreferenceRingelberg, J. 1981. Introduction to the research area Maarsseveen. Hydrobiol. Bull. 15 : 5 – 10.en_US
dc.identifier.citedreferenceSommer, U. 1985. Seasonal succession of phytoplankton in Lake Constance. Bioscience 35 : 351 – 7.en_US
dc.identifier.citedreferenceStrickland, J. D. H. & Parsons, T. R. 1972. A Practical Manual of Seawater Analysis. 2nd. ed. Fish. Res. Board Can., Ottawa, Bull. 167, 311 pp.en_US
dc.identifier.citedreferenceSuttle, C. A. & Harrison, P. J. 1988. Ammonium and phosphate uptake rates, N:P supply ratios, and evidence for N and P limitation in some oligotrophic lakes. Limnol. Oceanogr. 33 : 186 – 202.en_US
dc.identifier.citedreferenceThomas, W. H. & Dodson, A. H. 1974. Effect of interactions between temperature and nitrate supply on the cell division rates of two marine phytoflagellates. Mar. Biol. (Berl.) 24 : 213 – 7.en_US
dc.identifier.citedreferenceTilman, D. 1977. Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58 : 338 – 48.en_US
dc.identifier.citedreferenceTilman, D. 1978. The role of nutrient competition in a predictive theory of phytoplankton dynamics. Mitt. Int. Theor. Angew. Limnol. 21 : 585 – 93.en_US
dc.identifier.citedreferenceTilman, D. 1980. Resources: a graphical-mechanistic approach to competition and predation. Am. Nat. 116 : 362 – 93.en_US
dc.identifier.citedreferenceTilman, D. 1981. Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62 : 802 – 15.en_US
dc.identifier.citedreferenceTilman, D. 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, 296 pp.en_US
dc.identifier.citedreferenceTilman, D. & Kilham, S. S. 1976. Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. J. Phycol. 12 : 375 – 83.en_US
dc.identifier.citedreferenceTilman, D., Kilham, S. S. & Kilham, P. 1982. Phytoplankton community ecology: the role of limiting nutrients. Ann. Res. Ecol. System. 13 : 349 – 72.en_US
dc.identifier.citedreferenceTilman, D., Mattson, M. & Langer, S. 1981. Competition and nutrient kinetics along a temperature gradient: an experimental test of a mechanistic approach to niche theory. Limnol. Oceanogr. 26 : 1020 – 34.en_US
dc.identifier.citedreferencevan Donk, E. 1983. Factors influencing phytoplankton growth and sucession in Lake Maarsseveen. Ph.D. Thesis. University of Amsterdam, The Netherlands. 148 pp.en_US
dc.identifier.citedreferencevan Donk, E. 1987. The water quality of the two Maarsseveen lakes in relation to their hydrodynamics. Hydrobiol. Bull. 21 : 17 – 24.en_US
dc.identifier.citedreferencevan Donk, E. 1989. The role of parasitism in the control of phytoplankton succession. In Sommer, U. [ Ed. ] Plankton Ecology: Succession in Plankton Communities. Springer, New York, pp. 171 – 94.en_US
dc.identifier.citedreferencevan Donk, E., Mur, L. R. & Ringelberg, J. 1989. Bioassays in comparison with nutrient uptake experiments for determination of the growth rate limiting factor(s) of a phytoplankton population. Dev. Hydrobiol. 188/189 : 201 – 10.en_US
dc.identifier.citedreferencevan Donk, E. & Ringelberg, J. 1983. The effect of fungal parasitism on the succession of diatoms in Lake Maarsseveen I (The Netherlands). Freshwater Biol. 13 : 241 – 51.en_US
dc.identifier.citedreferencevan Donk, E., Veen, A. & Ringelberg, J. 1988. Natural community bioassays to determine the abiotic factors that control phytoplankton growth and succession. Freshwater Biol. 20 : 199 – 210.en_US
dc.identifier.citedreferenceVeldkamp, H. & Jannasch, H. W. 1972. Mixed culture studies with the chemostat. J. Appl. Chem. Biotechnol. 22 : 105 – 23.en_US
dc.identifier.citedreferenceZevenboom, W. 1980. Growth and nutrient uptake kinetics of Oscillatoria agardhii. Ph.D. Thesis, University of Amsterdam, The Netherlands, 178 pp.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.