Show simple item record

Pre- and Posttranslational Regulation of Β-Endorphin Biosynthesis in the CNS: Effects of Chronic Naltrexone Treatment

dc.contributor.authorBronstein, David M.en_US
dc.contributor.authorDay, Nicola C.en_US
dc.contributor.authorGutstein, Howard B.en_US
dc.contributor.authorTrujillo, Keith A.en_US
dc.contributor.authorAkil, Hudaen_US
dc.date.accessioned2010-04-01T15:08:16Z
dc.date.available2010-04-01T15:08:16Z
dc.date.issued1993-01en_US
dc.identifier.citationBronstein, David M.; Day, Nicola C.; Gutstein, Howard B.; Trujillo, Keith A.; Akil, Huda (1993). "Pre- and Posttranslational Regulation of Β-Endorphin Biosynthesis in the CNS: Effects of Chronic Naltrexone Treatment." Journal of Neurochemistry 60(1): 40-49. <http://hdl.handle.net/2027.42/65603>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65603
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=8417165&dopt=citationen_US
dc.description.abstractThere appear to be two anatomically distinct Β-endorphin (ΒE) pathways in the brain, the major one originating in the arcuate nucleus of the hypothalamus and a smaller one in the area of the nucleus tractus solitarius (NTS) of the caudal medulla. Previous studies have shown that these two proopiomelanocortin (POMC) systems may be differentially regulated by chronic morphine treatment, with arcuate cells down-regulated and NTS cells unaffected. In the present experiments, we examined the effects of chronic opiate antagonist treatment on ΒE biosynthesis across different CNS regions to assess whether the arcuate POMC system would be regulated in the opposite direction to that seen after opiate agonist treatment and to determine whether different ΒE-containing areas might be differentially regulated. Male adult rats were administered naltrexone (NTX) by various routes for 8 days (subcutaneous pellets, osmotic minipumps, or repeated intraperitoneal injections). Brain and spinal cord regions were assayed for total ΒE-ir, different molecular weight immunoreactive Β-endorphin (ΒE-ir) peptides, and POMC mRNA. Chronic NTX treatment, regardless of the route of administration, reduced total ΒE-ir concentrations by 30–40% in diencephalic areas (the arcuate nucleus, the remaining hypothalamus, and the thalamus) and the midbrain, but had no effect on ΒE-ir in the NTS or any region of the spinal cord. At the same time, NTX pelleting increased POMC mRNA levels in the arcuate to ∼ 140% of control values. These data suggest that arcuate POMC neurons are up-regulated after chronic NTX treatment (whereas NTS and spinal cord systems remain unaffected) and that they appear to be under tonic inhibition by endogenous opioids. Chromatographic analyses demonstrated that, after chronic NTX pelleting, the ratio of full length ΒE 1–31 to more processed ΒE-ir peptides (i.e., ΒE 1–27 and ΒE 1–26 ) tended to increase in a dose-dependent manner in diencephalic areas. Because ΒE 1–31 is the only POMC product that possesses opioid agonist properties, and ΒE 1–27 has been posited to function as an endogenous anatgonist of ΒE 1–31 , the NTX-induced changes in the relative concentrations of ΒE 1–31 and ΒE 1–27 /ΒE 1–26 may represent a novel regulatory mechanism of POMC cells to alter the opioid signal in the synapse.en_US
dc.format.extent1222532 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1993 International Society for Neurochemistryen_US
dc.subject.otherOpioidsen_US
dc.subject.otherOpiate Antagonisten_US
dc.subject.otherProopiomelanocortinen_US
dc.subject.otherΒ-Endorphin Processingen_US
dc.subject.otherProopiomelanocortin MRNAen_US
dc.subject.otherEndogenous Opioidsen_US
dc.titlePre- and Posttranslational Regulation of Β-Endorphin Biosynthesis in the CNS: Effects of Chronic Naltrexone Treatmenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMental Health Research Institute, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationum* Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid8417165en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65603/1/j.1471-4159.1993.tb05820.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1993.tb05820.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAkil H., Watson S. J., Barchas J. D., and Li C. H. ( 1979 ) Beta-endorphin immunoreactivity in rat and human blood: radioimmunoassay, comparative levels, and physiological alterations. Life Sci. 24, 1659 – 1666.en_US
dc.identifier.citedreferenceAkil H., Young E., Watson S. J., and Coy D. ( 1981 ) Opiate binding properties of naturally occurring N- and C-terminus modified beta-endorphin. Peptides 2, 289 – 292.en_US
dc.identifier.citedreferenceAkil H., Shiomi H., and Matthews J. ( 1985 ) Induction of the intermediate pituitary by stress: synthesis and release of a non-opioid form of beta-endorphin. Science 227, 424 – 426.en_US
dc.identifier.citedreferenceBals-Kubik R., Herz A., and Shippenberg T. S. ( 1988 ) Β-endorphin-(1–27) is a naturally occurring antagonist of the reinforcing effects of opioids. Naunyn Schmiedebergs Arch. Pharmacol. 338, 392 – 396.en_US
dc.identifier.citedreferenceBardo M. T., Miller J. S., and Risner M. E. ( 1984 ) Opiate receptor supersensitivity produced by chronic naloxone treatment: dissociation of morphine-induced antinociception and conditioned taste aversion. Pharmacol. Biochem. Behav. 21, 591 – 597.en_US
dc.identifier.citedreferenceBloch B., Bugnon C., Fellman D., and Lenys D. ( 1978 ) Immunocytochemical evidence that the same neurons in the human infundibular nucleus are stained with anti-endorphins and anti-sera of other related peptides. Neurosci. Lett. 10, 147 – 152.en_US
dc.identifier.citedreferenceBloom F., Battenberg E., Rossier J., Ling N., and Guillemin R. ( 1978 ) Neurons containing beta-endorphin in rat brain exist separately from those containing enkephalin: immunocytochemical studies. Proc. Natl. Acad. Sci. USA 75, 1591 – 1595.en_US
dc.identifier.citedreferenceBradbury A. F., Feldberg W. F., Smyth D. G., and Snell C. ( 1976 ) Lipotropin C-fragment: an endogenous peptide with potent analgesic activity. In : Opiates and Endogenous Opioid Peptides ( Kosterlitz H., ed ), pp. 63 – 70. Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceBronstein D. M. and Akil H. ( 1989 ) Effects of electrical stimulation in the periaqueductal gray on POMC peptides and mRNA in the rat brain. In : Prog. Clin. Biol. Res. ( Quirion R., Jhamandas K., and Gianoulakis C., eds ), pp. 219 – 222. Alan R. Liss, New York.en_US
dc.identifier.citedreferenceBronstein D. M., Przewlocki R., and Akil H. ( 1990 ) Effects of morphine treatment on proopiomelanocortin systems in rat brain. Brain Res. 519, 102 – 111.en_US
dc.identifier.citedreferenceBronstein D. M., Schafer M. K. H., Watson S. J., and Akil H. ( 1992 ) Evidence that Β-endorphin is synthesized in the nucleus tractus solitarius: detection of POMC mRNA. Brain Res. ( in press ).en_US
dc.identifier.citedreferenceCathala G., Savouret J. T., Mendez B., West B. L., Karin M., Martial J. A., and Bexter J. D. ( 1983 ) A method for the isolation of intact, translationally active ribonucleic acid. DNA 2, 329 – 335.en_US
dc.identifier.citedreferenceChavkin C., James I. F., and Goldstein A. ( 1982 ) Dynorphin is a specific endogenous ligand of the kappa-opioid receptor. Science 215, 413 – 415.en_US
dc.identifier.citedreferenceChretien M., Benjannet S., Dragon N., Seidah N. G., and Lis M. ( 1976 ) Isolation of peptides with opiate activity from sheep and human pituitaries: relationship to beta-LPH. Biochem. Biophys. Res. Commun. 72, 472 – 478.en_US
dc.identifier.citedreferenceDeakin J. F., Dostrovsky J. O., and Smyth D. ( 1980 ) Influence of N-terminal acetylation and C-terminal proteolysis on the analgesic activity of beta-endorphin. Biochem. J. 189, 501 – 506.en_US
dc.identifier.citedreferenceDores R. M., Jain M., and Akil H. ( 1986 ) Characterization of the forms of Β-endorphin and Α-MSH in the caudal medulla of the rat and guinea pig. Brain Res. 377, 251 – 260.en_US
dc.identifier.citedreferenceEmeson R. B. and Eipper B. A. ( 1986 ) Characterization of pro-ACTH/endorphin-derived peptides in rat hypothalamus. J. Neurosci. 6, 837 – 849.en_US
dc.identifier.citedreferenceGianoulakis C. and Angelogianni P. ( 1989 ) Characterization of Β-endorphin peptides in the spinal cord of the rat. Peptides 10, 1049 – 1054.en_US
dc.identifier.citedreferenceGutstein H. B., Bronstein D. M., and Akil H. ( 1990 ) The effect of chronic morphine administration on spinal Β-endorphin levels. Soc. Neurosci. Abstr. 16, 1026.en_US
dc.identifier.citedreferenceGutstein H. B., Bronstein D. M., and Akil H. ( 1992 ) Beta-endorphin processing and cellular origins in rat spinal cord. Pain ( in press ).en_US
dc.identifier.citedreferenceHammonds R. G. Jr., Nicolas P., and Li C. H. ( 1984 ) Β-Endorphin-(1–27) is an antagonist of Β-endorphin analgesia. Proc. Natl. Acad. Sci. USA 81, 1389 – 1390.en_US
dc.identifier.citedreferenceHirsch M. D., Millington W. R., McKenzie J. E., and Mueller G. P. ( 1988 ) Β-Endorphin-(1–27) is a potent endogenous hypotensive agent. Soc. Neurosci. Abstr. 14, 465.en_US
dc.identifier.citedreferenceHirsch M. D., Villavicencio A. E., McKenzie J. E., and Millington W. R. ( 1990 ) C-terminal proteolysis modifies cardioregulation by Β-endorphin. Soc. Neurosci. Abstr. 16, 1025.en_US
dc.identifier.citedreferenceJoseph S. A. and Michael G. J. ( 1988 ) Efferent ACTH-IR opiocortin projections from nucleus tractus solitarius: a hypothalamic deafferentation study. Peptides 9, 193 – 201.en_US
dc.identifier.citedreferenceJoseph S. A., Pilcher W. H., and Bennet-Clarke C. ( 1983 ) Immunocytochemical localization of ACTH perikarya in nucleus tractus solitarius: evidence for a second opiocortin neuronal system. Neurosci. Lett. 38, 221 – 225.en_US
dc.identifier.citedreferenceKhachaturian H., Lewis M. E., Tsou K., and Watson S. J. ( 1985 ) Β-Endorphin, Α-MSH, ACTH, and related peptides. In : Handbook of Chemical Neuroanatomy, Vol. 4: GABA and Neuropeptides in the CNS, Part I ( Bjorklund A. and Hokfelt T., eds ), pp. 216 – 272. Elsevier Science, Amsterdam.en_US
dc.identifier.citedreferenceL'Hereault S. and Barden N. ( 1991 ) Regulation of proopiomelanocortin messenger RNA concentrations by opioid peptides in primary cell cultures of rat hypothalamus. Mol. Brain Res. 10, 115 – 121.en_US
dc.identifier.citedreferenceMains R. E., Eipper B. A., and Ling N. ( 1977 ) Common precursor to corticotropins and endorphins. Proc. Natl. Acad. Sci. USA 74, 3014 – 3017.en_US
dc.identifier.citedreferenceMocchetti I. and Costa E. ( 1986 ) Down regulation of hypothalamic pro-opiomelanocortin system during morphine tolerance. Neuropharmacology 9 ( Suppl. 1 ), 125 – 127.en_US
dc.identifier.citedreferenceMocchetti I., Ritter A., and Costa E. ( 1989 ) Down-regulation of pro-opiomelanocortin synthesis and beta-endorphin utilization in hypothalamus of morphine-tolerant rats. J. Mol. Neurosci. 1, 33 – 38.en_US
dc.identifier.citedreferenceNakanishi S., Inoue A., Kita T., Nakamura M., Chang A. C. Y., Cohen S. N., and Numa S. ( 1979 ) Nucleotide sequence of cloned cDNA for bovine corticotropin–beta-lipotropin precursor. Nature 278, 423 – 425.en_US
dc.identifier.citedreferenceNilaver G., Zimmerman E. A., Defendini R., Liotta A., Krieger D. A., and Brownstein M. ( 1979 ) Adrenocorticotropin and beta-LPH in hypothalamus. J. Cell Biol. 81, 50 – 58.en_US
dc.identifier.citedreferencePalkovits M. and Eskay R. L. ( 1987 ) Distribution and possible origin of Β-endorphin and ACTH in discrete brainstem nuclei of rats. Neuropeptides 9, 123 – 137.en_US
dc.identifier.citedreferencePalkovits M., Mezey E., and Eskay R. L. ( 1987 ) Pro-opiomelanocortin–derived peptides (ACTH/Β-endorphin/Α-MSH) in brainstem baroreceptor areas of the rat. Brain Res. 436, 323 – 328.en_US
dc.identifier.citedreferenceRagavan V. V., Wardlaw S. L., Kreek M. J., and Frantz A. G. ( 1983 ) Effect of chronic naltrexone and methadone administration on brain immunoreactive Β-endorphin in the rat. Neuroendocrinology 37, 266 – 268.en_US
dc.identifier.citedreferenceRoberts J. L. and Herbert E. ( 1977a ) Characterization of a common precursor to corticotropin and beta-lipotropin: cell-free synthesis of the precursor and identification of corticotropin peptides in the molecule. Proc. Natl. Acad. Sci. USA 74, 4826 – 4830.en_US
dc.identifier.citedreferenceRoberts J. L. and Herbert E. ( 1977b ) Characterization of a common precursor to corticotropin and beta-lipotropin: identification of beta-lipotropin peptides and their arrangement relative to corticotropin in the precursor synthesized in a cell free system. Proc. Natl. Acad. Sci. USA 74, 5300 – 5304.en_US
dc.identifier.citedreferenceRomualdi P., Lesa G., and Ferri S. ( 1990 ) Chronic exposure to opioid agonists and an antagonist affects pro-dynorphin gene expression. In : New Leads in Opioid Peptide Research ( van Ree J. M., Mulder A. H., Wiegant V. M., and van Wimersma Greidanus T. B., eds ), pp. 146 – 147. Excerpta Medica, Amsterdam.en_US
dc.identifier.citedreferenceRomualdi P., Lesa G., and Ferri S. ( 1991 ) Chronic opiate agonists down-regulate prodynorphin gene expression in rat brain. Brain Res. 563, 132 – 136.en_US
dc.identifier.citedreferenceSchwartzberg D. G. and Nakane P. K. ( 1983 ) ACTH-related peptide containing neurons within the medulla oblongata of the rat. Brain Res. 276, 351 – 356.en_US
dc.identifier.citedreferenceShiomi H., Watson S. J., Kelsey J. E., and Akil H. ( 1986 ) Pre-translational and post-translational mechanisms for regulating Β-endorphin-adrenocorticotropin of the anterior pituitary lobe. Endocrinology 119, 1793 – 1799.en_US
dc.identifier.citedreferenceSpampinato S. and Candeletti S. ( 1985 ) Characterization of dynorphin–induced antinociception at the spinal level. Eur. J. Pharmacol. 110, 21 – 30.en_US
dc.identifier.citedreferenceTempel A., Gardner E. L., and Zukin R. S. ( 1985 ) Neurochemical and functional correlates of naltrexone-induced opiate receptor up-regulation. J. Pharmacol. Exp. Ther. 232, 439 – 444.en_US
dc.identifier.citedreferenceTempel A., Kessler J. A., and Zukin R. S. ( 1990 ) Chronic naltrexone treatment increases expression of preproenkephalin and preprotachykinin mRNA in discrete brain regions. J. Neurosci. 10, 741 – 747.en_US
dc.identifier.citedreferenceTseng L. F. and Li C. H. ( 1986 ) Beta-endorphin (1–27) inhibits the spinal beta-endorphin–induced release of met-enkephalin. Int. J. Pept. Protein Res. 27, 394 – 397.en_US
dc.identifier.citedreferenceTsou K., Khachaturian H., Akil H., and Watson S. J. ( 1986 ) Immunocytochemical localization of proopiomelanocortin–derived peptides in the adult rat spinal cord. Brain Res. 378, 28 – 35.en_US
dc.identifier.citedreferenceUhl G. R., Ryan J. P., and Schwartz J. P. ( 1988 ) Morphine alters preproenkephalin gene expression. Brain Res. 458, 391 – 397.en_US
dc.identifier.citedreferenceWatson S. J., Barchas J. D., and Li C. H. ( 1977 ) Beta-lipotropin: localization in cells and axons in rat brain by immunocytochemistry. Proc. Natl. Acad. Sci. USA 74, 5155 – 5158.en_US
dc.identifier.citedreferenceWatson S. J., Richard C. W., and Barchas J. D. ( 1978 ) Adrenocorticotropin in rat brain: immunocytochemical localization in the cells and axons. Science 200, 1180 – 1182.en_US
dc.identifier.citedreferenceWilcox J. N., Roberts J. L., Chronwall B. M., Bishop J. F., and O'Donohoe T. ( 1986 ) Localization of proopiomelanocortin mRNA in functional subsets of neurons defined by their axonal projections. J. Neurosci. Res. 16, 89 – 96.en_US
dc.identifier.citedreferenceYoburn B. C., Goodman R. R., Cohen A. H., Pasternak G. W., and Inturrisi C. E. ( 1985 ) Increased analgesic potency of morphine and increased brain opioid binding sites in the rat following chronic naltrexone treatment. Life Sci. 36, 2325 – 2332.en_US
dc.identifier.citedreferenceYoshida M. and Taniguchi Y. ( 1988 ) Projection of pro-opiomelanocortin neurons from the rat arcuate nucleus to the midbrain central gray as demonstrated by double staining with retrograde labeling and immunohistochemistry. Arch. Histol. Cytol. 51, 175 – 183.en_US
dc.identifier.citedreferenceYoung E., Bronstein D. M., and Akil H. ( 1992 ) Pro-opiomelanocortin (POMC) biosynthesis, processing and secretion: functional implications. Handbook Exp. Pharmacol. ( in press ).en_US
dc.identifier.citedreferenceZakarian S. and Smyth D. G. ( 1982 ) Β-Endorphin is processed differently in specific regions of rat pituitary and brain. Nature 296, 250 – 252.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.