Show simple item record

Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO 2 and tropospheric O 3

dc.contributor.authorPregitzer, Kurt S.en_US
dc.contributor.authorBurton, Andrew J.en_US
dc.contributor.authorKing, John S.en_US
dc.contributor.authorZak, Donald R.en_US
dc.date.accessioned2010-04-01T15:09:03Z
dc.date.available2010-04-01T15:09:03Z
dc.date.issued2008-10en_US
dc.identifier.citationPregitzer, Kurt S.; Burton, Andrew J.; King, John S.; Zak, Donald R. (2008). "Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO 2 and tropospheric O 3 ." New Phytologist 180(1): 153-161. <http://hdl.handle.net/2027.42/65617>en_US
dc.identifier.issn0028-646Xen_US
dc.identifier.issn1469-8137en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65617
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18643941&dopt=citationen_US
dc.format.extent223026 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 New Phytologist Trusten_US
dc.subject.otherCarbon Allocationen_US
dc.subject.otherCarbon Dioxide (CO 2 )en_US
dc.subject.otherClimate Changeen_US
dc.subject.otherFine Rootsen_US
dc.subject.otherGlobal Changeen_US
dc.subject.otherOzone (O 3 )en_US
dc.titleSoil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO 2 and tropospheric O 3en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumEcosystem Science Center, School of Forest Resources & Environmental Science, Michigan Technological University, Houghton, MI 49931, USA;en_US
dc.contributor.affiliationumSchool of Natural Resources & Environment and Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Natural Resources & Environmental Science, University of Nevada, Reno, NV 89512, USA;en_US
dc.contributor.affiliationotherDepartment of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;en_US
dc.identifier.pmid18643941en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65617/1/j.1469-8137.2008.02564.x.pdf
dc.identifier.doi10.1111/j.1469-8137.2008.02564.xen_US
dc.identifier.sourceNew Phytologisten_US
dc.identifier.citedreferenceAinsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO 2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2. New Phytologist 163 : 351 – 372.en_US
dc.identifier.citedreferenceAndersen CP. 2003. Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytologist 157 : 213 – 228.en_US
dc.identifier.citedreferenceBurton AJ, Pregitzer KS, Crawford JN, Zogg GP, Zak DR. 2004. Chronic additions reduce soil respiration in northern hardwood forests. Global Change Biology 10 : 1080 – 1091.en_US
dc.identifier.citedreferenceBurton AJ, Pregitzer KS, Hendrick RL. 2000. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125 : 389 – 399.en_US
dc.identifier.citedreferenceColeman MD, Dickson RE, Isebrands JG, Karnosky DF. 1996. Root growth and physiology of potted and field-grown trembling aspen exposed to ozone. Tree Physiology 16 : 145 – 152.en_US
dc.identifier.citedreferenceDickson RE, Lewin KF, Isebrands JG, Coleman MD, Heilman WE, Riemenschneider DE, Sober J, Host GE, Zak DR, Hendrey GR et al. 2000. Forest Atmosphere Carbon Transfer and Storage (FACTS-II), the aspen free-air CO 2 and O 3 enrichment (FACE) project: an overview. General Technical Report NC-214. St Paul, MN, USA : USDA Forest Service.en_US
dc.identifier.citedreferenceField CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281 : 237 – 240.en_US
dc.identifier.citedreferenceGorissen A, van Veen JA. 1988. Temporary disturbance of translocation of assimilates in Douglas-firs caused by low levels of ozone and sulfur dioxide. Plant Physiology 88 : 559 – 563.en_US
dc.identifier.citedreferenceGrantz DA, Gunn S, Vu H-B. 2006. O 3 impacts on plant development: a meta-analysis of root/shoot allocation and growth. Plant, Cell & Environment 29 : 1193 – 1209.en_US
dc.identifier.citedreferenceGrulke NW, Andersen CP, Hogsett WE. 2001. Seasonal changes in above- and belowground carbohydrate concentration of ponderosa pine along a pollution gradient. Tree Physiology 21 : 173 – 181.en_US
dc.identifier.citedreferenceHendrick RL, Pregitzer KS. 1992. The demography of fine roots in a northern hardwood forest. Ecology 73 : 1094 – 1104.en_US
dc.identifier.citedreferenceHendrick RL, Pregitzer KS. 1993. The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Canadian Journal of Forest Research 23 : 2507 – 2520.en_US
dc.identifier.citedreferenceJannsens IA, Kowalski AS, Longdoz B, Ceulemans R. 2000. Assessing forest soil CO 2 efflux: an in situ comparison of four techniques. Tree Physiology 20 : 23 – 32.en_US
dc.identifier.citedreferenceKarnosky DF, Pregitzer KS, Zak DR, Kubiske ME, Hendrey GR, Weinstein D, Nosal M, Percy KE. 2005. Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant, Cell & Environment 28 : 965 – 981.en_US
dc.identifier.citedreferenceKarnosky DF, Zak DR, Pregitzer KS, Awmack CS, Bockheim JG, Dickson RE, Hendrey GR, Host GE, King JS, Kopper BJ et al. 2003. Tropospheric O 3 moderates responses of temperate hardwood forests to elevated CO 2 : a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology 17 : 287 – 307.en_US
dc.identifier.citedreferenceKasurinen, A, Kokko-Gonzales P, Riikonen J, Vapaavuori E, Holopainen T. 2004. Soil CO 2 efflux of two silver birch clones exposed to elevated CO 2 and O 3 levels during three growing seasons. Global Change Biology 10 : 1654 – 1665.en_US
dc.identifier.citedreferenceKing JS, Hanson PJ, Bernhardt E, DeAngelis P, Norby RJ, Pregitzer KS. 2004. A multi-year synthesis of soil respiration responses to elevated atmospheric CO 2 from four FACE experiments. Global Change Biology 10 : 1027 – 1042.en_US
dc.identifier.citedreferenceKing JS, Kubiske ME, Pregitzer KS, Hendrey GR, McDonald EP, Giardina CP, Quinn VS, Karnosky DF. 2005. Tropospheric O 3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO 2. New Phytologist 168 : 623 – 636.en_US
dc.identifier.citedreferenceKing JS, Pregitzer KS, Zak DR, Sober J, Isebrands JG, Dickson RE, Hendrey GR, Karnosky DF. 2001. Fine root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO 2 and tropospheric O 3. Oecologia 128 : 237 – 250.en_US
dc.identifier.citedreferenceKubiske ME Quinn VS, Marquardt PE, Karnosky DF. 2007. Effects of elevated atmospheric CO 2 and/or O 3 on intra- and interspecific competitive ability of aspen. Plant Biology 9 : 342 – 355.en_US
dc.identifier.citedreferenceKubiske ME, Quinn VS, Heilman WE, McDonald EP, Marquardt PE, Teclaw RM, Friend AL, Karnosky DF. 2006. Interannual climatic variation mediates elevated CO 2 and O 3 effects on forest growth. Global Change Biology 12 : 1054 – 1068.en_US
dc.identifier.citedreferenceManning WJ, Feder WA, Papia PM, Perkins I. 1971. Influence of foliar ozone injury on root development and root surface fungi of pinto bean plants. Environmental Pollution 1 : 305 – 312.en_US
dc.identifier.citedreferenceNorby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R et al. 2005. Forest response to elevated CO 2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences, USA 102 : 18052 – 18056.en_US
dc.identifier.citedreferenceNorby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG. 2004. Fine-root production dominates response of a deciduous forest to atmospheric CO 2 enrichment. Proceedings of the National Academy of Sciences, USA 101 : 9689 – 9693.en_US
dc.identifier.citedreferencePell EJ, Temple PJ, Friend AL, Mooney HA, Winner WE. 1994. Compensation as a plant response to ozone and associated stresses: an analysis of ROPIS experiments. Journal of Environmental Quality 23 : 429 – 436.en_US
dc.identifier.citedreferencePregitzer KS, Zak DR, Curtis PS, Kubiske ME, Teeri JA, Vogel CS. 1995. Atmospheric CO 2, soil nitrogen and fine root turnover. New Phytologist 129 : 579 – 585.en_US
dc.identifier.citedreferencePregitzer KS, Loya W, Kubiske M, Zak D. 2006. Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 148 : 503 – 516.en_US
dc.identifier.citedreferencePregitzer KS, Zak DR, Maziasz J, DeForest J, Curtis PS, Lussenhop J. 2000. Interactive effects of atmospheric CO 2 and soil-N availability on fine roots of Populus tremuloides. Ecological Applications 10 : 18 – 33.en_US
dc.identifier.citedreferenceRennenberg H, Herschbach C, Poole A. 1996. Consequences of air pollution on shoot-root interactions. Journal of Plant Physiology 148 : 296 – 301.en_US
dc.identifier.citedreferenceRogers HH, Runion GB, Krupa SV. 1994. Plant responses to atmospheric CO 2 enrichment with emphasis on roots and the rhizosphere. Environmental Pollution 83 : 155 – 189.en_US
dc.identifier.citedreferenceRuess RW, Hendrick RL, Burton AJ, Pregitzer KS, SveinbjornssÖn B, Allen MG, Maurer GE. 2003. Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecological Monographs 73 : 643 – 662.en_US
dc.identifier.citedreferenceSmucker AJM, McBurney SL, Srivanstava AK. 1982. Quantitative separation of roots from compacted soil profiles by the hydropneumatic elutriation system. Agronomy Journal 74 : 500 – 503.en_US
dc.identifier.citedreferenceThompson SL, Govindasamy B, Mirin A, Caldeira K, Delire C, Milovich J, Wickett M, Erickson D. 2004. Quantifying the effects of CO 2 -fertilized vegetation on future global climate and carbon dynamics. Geophysical Research Letters 31 : L23211.en_US
dc.identifier.citedreferenceZak DR, Holmes WE, Pregitzer KS, King JS, Ellsworth DS, Kubiske ME. 2007. Belowground competition and the response of developing forest communities to atmospheric CO 2 and O 3. Global Change Biology 13 : 2230 – 2238.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.