Show simple item record

Tetraenoic Species Are Conserved in Muscarinically Enhanced Inositide Turnover

dc.contributor.authorRooijen, Lucio A. A.en_US
dc.contributor.authorHajra, Amiya K.en_US
dc.contributor.authorAgranoff, Bernard W.en_US
dc.date.accessioned2010-04-01T15:09:58Z
dc.date.available2010-04-01T15:09:58Z
dc.date.issued1985-02en_US
dc.identifier.citationRooijen, Lucio A. A.; Hajra, Amiya K.; Agranoff, Bernard W. (1985). "Tetraenoic Species Are Conserved in Muscarinically Enhanced Inositide Turnover." Journal of Neurochemistry 44(2): 540-543. <http://hdl.handle.net/2027.42/65633>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65633
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=2981288&dopt=citationen_US
dc.description.abstractCarbamylcholine enhances the labeling of phosphatidate and phosphatidylinositol from 32 P i in nerve endings. Approximately 74% of labeled phosphatidate and 85% of labeled phosphatidylinositol produced on muscarinic stimulation are accounted for by tetraenoic species, as detected by argentation TLC. Incubation of membranes derived from nerve endings with [Γ- 32 P]ATP under conditions of phosphodiesteratic degradation of endogenous polyphosphoinositides resulted in increased labeling of phosphatidate. Approximately 78% of the newly formed phosphatidate was in a tetraenoic fraction. It is concluded that in muscarinically stimulated nerve endings, the diacylglycerol moiety is conserved following diacylglycerol release from polyphosphoinositides through its resynthesis to inositol lipid via phosphatidate.en_US
dc.format.extent440302 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1985 International Society for Neurochemistryen_US
dc.subject.otherDiacylglycerolen_US
dc.subject.otherInositol Lipidsen_US
dc.subject.otherMuscarinic Receptoren_US
dc.subject.otherNerve Endingsen_US
dc.subject.otherPolyphosphoinositidesen_US
dc.subject.otherTetraenoic Lipidsen_US
dc.titleTetraenoic Species Are Conserved in Muscarinically Enhanced Inositide Turnoveren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumNeuroscience Building, Mental Health Research Institute and Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid2981288en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65633/1/j.1471-4159.1985.tb05446.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1985.tb05446.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAveldano, M. I. and Bazan, N. G. ( 1975 ) Rapid production of diacylglycerols enriched in arachidonate and stearate during early ischemia. J. Neurochem. 25, 919 – 920.en_US
dc.identifier.citedreferenceBaker, R. R. and Thompson, W. ( 1972 ) Positional distribution and turnover of fatty acids in phosphatidic acid, phosphoinositides, phosphatidylcholine and phosphatidylethanolamine in rat brain. in vivo. Biochim. Biophys. Acta 270, 489 – 503.en_US
dc.identifier.citedreferenceBanschbach, M. W., Geison, R. L., and Hokin-Neaverson, M. ( 1981 ) Effect of cholinergic stimulation on levels and fatty acid composition of diacylglycerols in mouse pancreas. Biochim. Biophys. Acta 663, 34 – 45.en_US
dc.identifier.citedreferenceBazan, N. G. ( 1970 ) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218, 1 – 10.en_US
dc.identifier.citedreferenceBell, R. L., Kennerly, D. A., Stanford, N., and Majerus, P. W. ( 1979 ) Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc. Natl. Acad. Sci. 76, 3238 – 3241.en_US
dc.identifier.citedreferenceBerridge, M. J. ( 1983 ) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyze polyphosphoinositides instead of phosphatidylinositol. Biochem. J. 212, 849 – 858.en_US
dc.identifier.citedreferenceBillah, M. M., Lapetina, E. G., and Cuatrecasas, P. ( 1981 ) Phospholipase A 2 activity specific for phosphatidic acid. A possible mechanism for the production of arachidonic acid in platelets. J. Biol. Chem. 256, 5399 – 5403.en_US
dc.identifier.citedreferenceBroekman, M. J., Ward, J. W., and Marcus, A. J. ( 1980 ) Phospholipid metabolism in stimulated platelets. Changes in phosphatidylinositol, phosphatidic acid and lysophospholipids. J. Clin. Invest. 66, 275 – 283.en_US
dc.identifier.citedreferenceBroekman, M. J., Ward, J. W., and Marcus, A. J. ( 1981 ) Fatty acid composition of phosphatidylinositol and phosphatidic acid in stimulated platelets. J. Biol. Chem. 256, 8271 – 8274.en_US
dc.identifier.citedreferenceDe Boer, T. J. and Backer, H. J. ( 1963 ) p -Tolylsulfonylmethylnitrosamide. Org. Synth. Coll. IV, 943 – 946.en_US
dc.identifier.citedreferenceFisher, S. K., Van Rooijen, L. A. A., and Agranoff, B. W. ( 1984 ) Renewed interest in the polyphosphoinositides. Trends Biochem. Sci. 9, 53 – 56.en_US
dc.identifier.citedreferenceGeiger, P. J. and Bessman, S. P. ( 1972 ) Protein determination by Lowry's method in the presence of sulphydryl reagents. Anal. Biochem. 49, 467 – 473.en_US
dc.identifier.citedreferenceHolub, B. J. and Kuksis, A. ( 1971 ) Resolution of intact phosphatidylinositol by argentation thin-layer chromatography. J. Lipid Res. 12, 510 – 512.en_US
dc.identifier.citedreferenceKeough, K. M. W., MacDonald, G., and Thompson, W. ( 1972 ) A possible relation between phosphoinositides and the diglyceride pool in rat brain. Biochim. Biophys. Acta 270, 337 – 347.en_US
dc.identifier.citedreferenceKerr, S. E. and Read, W. W. C. ( 1963 ) The fatty acid components of polyphosphoinositides prepared from calf brain. Biochim. Biophys. Acta 70, 477 – 478.en_US
dc.identifier.citedreferenceLapetina, E. G., Billah, M. M., and Cuatrecasas, P. ( 1981 ) The phosphatidylinositol cycle and the regulation of arachidonic acid production. Nature 292, 367 – 369.en_US
dc.identifier.citedreferenceMarion, J. and Wolfe, L. S. ( 1979 ) Origin of the arachidonic acid released post-mortem in rat forebrain. Biochim. Biophys. Acta 574, 25 – 32.en_US
dc.identifier.citedreferenceRenkonen, O. ( 1968 ) Mono- and dimethylphosphatidates from different subtypes of choline and ethanolamine glycerophosphatides. Biochim. Biophys. Acta 152, 114 – 135.en_US
dc.identifier.citedreferenceRittenhouse-Simmons, S. ( 1980 ) Indomethacin induced diglyceride accumulation in activated human platelets. J. Biol. Chem. 255, 2259 – 2262.en_US
dc.identifier.citedreferenceSchacht, J. and Agranoff, B. W. ( 1974 ) Stimulation of hydrolysis of phosphatidic acid by cholinergic agents in guinea pig synaptosomes. J. Biol. Chem. 249, 1551 – 1557.en_US
dc.identifier.citedreferenceVan Rooijen, L. A. A., Seguin, E. B., and Agranoff, B. W. ( 1983 ) Phosphodiesteratic breakdown of endogenous polyphosphoinositides in nerve ending membranes. Biochem. Biophys. Res. Commun. 112, 919 – 926.en_US
dc.identifier.citedreferenceWolfe, L. S. ( 1982 ) Eicosanoids: prostaglandins, thromboxanes, leukotrienes, and other derivatives of carbon-20 unsaturated fatty acids. J. Neurochem. 38, 1 – 14.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.