Show simple item record

Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules

dc.contributor.authorSakagami, Kenjien_US
dc.contributor.authorWu, David M.en_US
dc.contributor.authorPuro, Donald G.en_US
dc.date.accessioned2010-04-01T15:10:42Z
dc.date.available2010-04-01T15:10:42Z
dc.date.issued1999-12en_US
dc.identifier.citationSakagami, Kenji; Wu, David M.; Puro, Donald G. (1999). "Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules." The Journal of Physiology 521(3): 637-650. <http://hdl.handle.net/2027.42/65646>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65646
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=10601495&dopt=citationen_US
dc.format.extent626055 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rightsThe Physiological Society 1999en_US
dc.titlePhysiology of rat retinal pericytes: modulation of ion channel activity by serum-derived moleculesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Ophthalmology & Visual Sciences and Physiology, The University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USAen_US
dc.identifier.pmid10601495en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65646/1/j.1469-7793.1999.00637.x.pdf
dc.identifier.doi10.1111/j.1469-7793.1999.00637.xen_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceAgardh, E., Yeh, H. H., Herrmann, R. & Puro, D. G. ( 1985 ). Γ-Aminobutyric acid-mediated inhibition at cholinergic synapses formed by cultured retinal neurons. Brain Research 330, 323 – 328.en_US
dc.identifier.citedreferenceAnderson, D. R. ( 1996 ). Glaucoma, capillaries and pericytes 1. Blood flow regulation. Ophthalmologica 210, 257 – 262.en_US
dc.identifier.citedreferenceBalabanov, R. & Dore-Duffy, P. ( 1998 ). Role of the CNS microvascular pericyte in the blood-brain barrier. Journal of Neuroscience Research 53, 637 – 644.en_US
dc.identifier.citedreferenceBarry, P. H. ( 1993 ). JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. Journal of Neuroscience Methods 51, 107 – 116.en_US
dc.identifier.citedreferenceCogan, D. G., Toussaint, D. & Kuwabara, T. ( 1961 ). Retinal vascular patterns. IV. Diabetic retinopathy. Archives of Ophthalmology 66, 366 – 378.en_US
dc.identifier.citedreferenceCunha-Vaz, J., DeAbreu, J. R. F., Campos, A. J. & Figo, G. M. ( 1975 ). Early breakdown of the blood-retinal barrier in diabetes. British Journal of Ophthalmology 59, 649 – 656.en_US
dc.identifier.citedreferenceDas, A., Frank, R. N., Weber, M. L., Kennedy, A., Reidy, C. A. & Mancini, M. A. ( 1988 ). ATP causes retinal pericytes to contract in vitro. Experimental Eye Research 46, 349 – 362.en_US
dc.identifier.citedreferenceDeNofrio, D., Hook, T. C. & Herman, I. ( 1989 ). Functional sorting of actin isoforms in microvascular pericytes. Journal of Cell Biology 109, 191 – 202.en_US
dc.identifier.citedreferenceGreenwood, I. A., Helliwell, R. M. & Large, W. A. ( 1997 ). Modulation of Ca 2+ -activated Cl − currents in rabbit portal vein smooth muscle by an inhibitor of mitochondrial Ca 2+ uptake. The Journal of Physiology 505, 53 – 64.en_US
dc.identifier.citedreferenceHille, B. ( 1992 ). Ionic Channels of Excitable Membranes. Sinauer, Sunderland, MA, USA.en_US
dc.identifier.citedreferenceHirschi, K. K. & D'Amore, P. A. ( 1996 ). Pericytes in the microvasculature. Cardiovascular Research 32, 687 – 698.en_US
dc.identifier.citedreferenceJoyce, N. C., DeCamilli, P. & Boyles, J. ( 1984 ). Pericytes, like vascular smooth muscle cells, are immunocytochemically positive for cyclic GMP-dependent protein kinase. Microvascular Research 28, 206 – 219.en_US
dc.identifier.citedreferenceJoyce, N. C., Haire, M. F. & Palade, G. E. ( 1985 ). Contractile proteins in pericytes. I. Immunoperoxidase localization of tropomyosin. Journal of Cell Biology 100, 1379 – 1386.en_US
dc.identifier.citedreferenceKelley, C., D'Amore, P., Hechtman, H. B. & Shepro, D. ( 1987 ). Microvascular pericyte contractility in vitro: comparison with other cells of the vascular wall. Journal of Cell Biology 104, 483 – 490.en_US
dc.identifier.citedreferenceKing, G. L., Goodman, D. A., Buzney, S., Moses, A. & Kahn, R. C. ( 1984 ). Receptors and growth-promoting effects of insulin and insulin-like growth factors on cells from bovine retinal capillaries and aorta. Journal of Clinical Investigation 75, 1028 – 1039.en_US
dc.identifier.citedreferenceKusaka, S. & Puro, D. G. ( 1997 ). Intracellular ATP activates inwardly rectifying K + channels in human and monkey retinal MÜller (glial) cells. The Journal of Physiology 500, 593 – 604.en_US
dc.identifier.citedreferenceKuwabara, T. & Cogan, D. G. ( 1960 ). Studies of retinal vascular patterns. Part 1. Normal architecture. Archives of Ophthalmology 64, 904 – 911.en_US
dc.identifier.citedreferenceKyrozis, A. & Reichling, D. B. ( 1995 ). Perforated-patch recording with gramicidin avoids artifactual changes in intracellular chloride concentration. Journal of Neuroscience Methods 57, 27 – 35.en_US
dc.identifier.citedreferenceLeRoith, D. ( 1997 ). Insulin-like growth factors. New England Journal of Medicine 336, 633 – 640.en_US
dc.identifier.citedreferenceMathews, M. K., Merges, C., McLeod, D. S. & Lutty, G. A. ( 1997 ). Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy. Investigative Ophthalmology and Visual Science 38, 2729 – 2741.en_US
dc.identifier.citedreferenceMatsugi, T., Chen, Q. & Anderson, D. R. ( 1997 ). Contractile responses of cultured bovine retinal pericytes to angiotensin II. Archives of Ophthalmology 115, 1281 – 1285.en_US
dc.identifier.citedreferenceMayer, M. L. & Westbrook, G. L. ( 1987 ). Permeation and block of N- methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. The Journal of Physiology 394, 501 – 527.en_US
dc.identifier.citedreferenceMerritt, J. E., Armstrong, W. P., Benhan, C. D., Hallan, T. J., Jacob, R., Jaxa-Chamiec, A., Leigh, B. K., McCarthy, S. A., Moores, K. E. & Rink, T. J. ( 1990 ). SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochemistry Journal 271, 515 – 522.en_US
dc.identifier.citedreferenceOwens, D. F., Boyce, L. H., Davis, M. B. E. & Kriegstein, A. R. ( 1996 ). Excitatory GABA-responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. Journal of Neuroscience 16, 6414 – 6423.en_US
dc.identifier.citedreferenceRhee, J.-S., Ebihara, S. & Akaike, N. ( 1994 ). Gramicidin perforated patch-clamp technique reveals glycine-gated outward chloride current in dissociated nucleus solitarii neurons of the rat. Journal of Neurophysiology 72, 1103 – 1108.en_US
dc.identifier.citedreferenceSchonfelder, U., Hofer, A., Paul, M. & Funk, R. H. W. ( 1998 ). In situ observation of living pericytes in rat retinal capillaries. Microvascular Research 56, 22 – 29.en_US
dc.identifier.citedreferenceShepro, D. & Morel, N. L. ( 1993 ). Pericyte physiology. FASEB Journal 7, 1031 – 1038.en_US
dc.identifier.citedreferenceTilton, R. G. ( 1991 ). Capillary pericytes: Perspectives and future trends. Journal of Electron Microscopy Technique 19, 327 – 344.en_US
dc.identifier.citedreferenceTilton, R. G., Kilo, C., Williamson, J. R. & Murch, D. W. ( 1979 ). Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures. Microvascular Research 18, 336 – 352.en_US
dc.identifier.citedreferenceWang, Q., Hogg, R. C. & Large, W. A. ( 1992 ). Properties of spontaneous inward currents recorded in smooth muscle cells isolated from the rabbit portal vein. The Journal of Physiology 451, 525 – 537.en_US
dc.identifier.citedreferenceWang, X.-Y. & Kotlikoff, M. I. ( 1997 ). Inactivation of calcium-activated chloride channels in smooth muscle by calcium/calmodulin-dependent protein kinase. Proceedings of the National Academy of Sciences of the USA 94, 14918 – 14923.en_US
dc.identifier.citedreferenceWiederholt, M., Berwick, S. & Helbig, H. ( 1995 ). Electrophysiological properties of cultured retinal capillary pericytes. Progress in Retinal Research 14, 437 – 451.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.