Show simple item record

Effect of Aspartame-Derived Phenylalanine on Neutral Amino Acid Uptake in Human Brain: A Positron Emission Tomography Study

dc.contributor.authorKoeppe, Robert A.en_US
dc.contributor.authorShulkin, Barry L.en_US
dc.contributor.authorRosenspire, Karen C.en_US
dc.contributor.authorShaw, Leslie A.en_US
dc.contributor.authorBetz, A. Lordsen_US
dc.contributor.authorMangner, Thomas J.en_US
dc.contributor.authorPrice, Joy C.en_US
dc.contributor.authorAgranoff, Bernard W.en_US
dc.date.accessioned2010-04-01T15:12:00Z
dc.date.available2010-04-01T15:12:00Z
dc.date.issued1991-05en_US
dc.identifier.citationKoeppe, Robert A.; Shulkin, Barry L.; Rosenspire, Karen C.; Shaw, Leslie A.; Betz, A. Lords; Mangner, Thomas; Price, Joy C.; Agranoff, Bernard W. (1991). "Effect of Aspartame-Derived Phenylalanine on Neutral Amino Acid Uptake in Human Brain: A Positron Emission Tomography Study." Journal of Neurochemistry 56(5): 1526-1535. <http://hdl.handle.net/2027.42/65668>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65668
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=2013754&dopt=citationen_US
dc.description.abstractThe possible effects of elevation of the plasma phe-nylalanine level secondary to the ingestion of aspartame on brain amino acid uptake in human subjects have been investigated by means of positron emission tomography (PET). 1-[ 11 C]Aminocyclohexanecarboxylate ([ 11 C]ACHC) is a poorly metabolized synthetic amino acid that crosses the blood-brain barrier by the same carrier that transports naturally occurring large neutral amino acids. Quantitative test-retest PET studies were performed on 15 individuals. Seven received two identical baseline scans, whereas eight received a baseline scan followed by a scan performed ∼40–45 min following ingestion of an orange-flavored beverage containing 34 mg/kg of body weight of the low-calorie sweetener aspartame, a dose equivalent to the amount in 5 L of diet soft drink consumed all at once by the study subjects, weighing an average of 76 kg. The 40–45-min interval was selected to maximize the detection of possible decreases in ACHC uptake resulting from increased competition for the carrier, because the plasma phenylalanine level is known to peak at this time. We observed an 11.5% decrease in the amino acid transport rate constant Kt and a smaller decrease in the tissue distribution volume of ACHC (6%). Under conditions of normal dietary use, aspartame is thus unlikely to cause changes in brain amino acid uptake that are measurable by PET.en_US
dc.format.extent2139911 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1991 International Society for Neurochemistry Ltd.en_US
dc.subject.otherAmino Acid Transporten_US
dc.subject.otherPhenylalanineen_US
dc.subject.otherAminocyen_US
dc.subject.otherClohexanecarboxylateen_US
dc.subject.otherAspartameen_US
dc.subject.otherPositron Emission Tomographyen_US
dc.subject.otherBlood-brain Barrieren_US
dc.titleEffect of Aspartame-Derived Phenylalanine on Neutral Amino Acid Uptake in Human Brain: A Positron Emission Tomography Studyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Internal Medicine (Division of Nuclear Medicine), Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationum* Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationum† Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationum† Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationum§ Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationumDepartment of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationum# Mental Health Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid2013754en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65668/1/j.1471-4159.1991.tb02047.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1991.tb02047.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAlpert N. M., Eriksson L., Chang J. Y., Bergstrom M., Litton J. E., Correia J. A., Bohm C, Ackerman R. H., and Taveras J. M. ( 1984 ) Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography. J. Cereb. Blood Flow Metab. 4, 28 – 34.en_US
dc.identifier.citedreferenceAoyagi M., Agranoff B. W., Washburn L. C., and Smith Q. R. ( 1988 ) Blood-brain barrier of transport aminocyclohexanecarboxylic acid, a nonmetabolizable amino acid for in vivo studies of brain transport. J. Neurochem. 50, 1220 – 1226.en_US
dc.identifier.citedreferenceButchko H. and Kotsonis F. ( 1989 ) Aspartame: review of recent research. Comments Toxicol. 3, 253 – 278.en_US
dc.identifier.citedreferenceChoi T. B. and Pardridge W. M. ( 1986 ) Phenylalanine transport at the human blood-brain barrier. J. Biol. Chem. 261, 6536 – 6541.en_US
dc.identifier.citedreferenceDuara R., Gross-Glenn K., Barker W. W., Chang J. Y., Apicella A., Loewenstein A., and Boothe T. ( 1987 ) Behavioral activation and the variability of cerebral glucose metabolic measurements. J. Cereb. Blood Flow Metab. 7, 266 – 271.en_US
dc.identifier.citedreferenceFernstrom J. D., Wurtman R. J., Hammerstrom-Wiklund B., Rand W. M., Numro H. M., and Davidson C. S. ( 1979 ) Diurnal variations in plasma concentration of tryptophan, tyrosine, and other neutral amino acids: effect of dietary protein intake. Am. J. Clin. Nutr. 32, 1912 – 1922.en_US
dc.identifier.citedreferenceFood and Drug Administration ( 1981 ) Fed. Regist. 46, 38285.en_US
dc.identifier.citedreferenceFox P. T., Mintun M. A., Raichle M. E., and Herscovitch P. ( 1984 ) A noninvasive approach to quantitative functional brain mapping with Hj′5O and positron emission tomography. J. Cereb. Blood Flow Metab. 4, 329 – 333.en_US
dc.identifier.citedreferenceFrey K. A. ( 1989 ) Positron emission tomography, in Basic Neuro-chemistry: Molecular, Cellular, and Medical Aspects, 4th ed. ( Siegel G. J., Agranoff B. W., Albers R. W., and Molinoff P. B., eds ), pp. 839 – 855. Raven Press, New York.en_US
dc.identifier.citedreferenceHargreaves K. M. and Pardridge W. M. ( 1988 ) Neutral amino acid transport at the human blood-brain barrier. J. Biol. Chem. 263, 19392 – 19397.en_US
dc.identifier.citedreferenceHayes R. L., Washburn L. C, Wieland B. W., Sun T. T., Anon J. B., Butler T. A., and Callahan A. P. ( 1978 ) Synthesis and purification of 11 C-carboxyl-labeled amino acids. Int. J. Appl. Radial. sot. 29, 186 – 187.en_US
dc.identifier.citedreferenceHurwitz A. ( 1989 ) Aspartame and sucrose increase the plasma phe-nylalanine to large neutral amino acid ratio in healthy subjects. FASEBJ. 3, A.125l.en_US
dc.identifier.citedreferenceHomier B. E. ( 1984 ) Properties and stability of aspartame. Food Technol. 38, 50 – 55.en_US
dc.identifier.citedreferenceKaufman S. ( 1977 ) Phenylketonuria: biochemical mechanisms, in Advances in Neurochemistry, Vol. 2 ( Agranoff B. W. and Aprison M. H., eds ), pp. 1 – 133. Plenum Press, New York.en_US
dc.identifier.citedreferenceKoeppe R. A., Mangner T., Betz A. L., Shulkin B. L., Allen R., Kollros P., Kuhl D. E., and Agranoff B. W. ( 1990 ) Use of 11 C-aminocyclohexanecarboxylate for the measurement of amino acid uptake and distribution volume in human brain. J. Cereb. Blood Flow Metab. 10, 727 – 739.en_US
dc.identifier.citedreferenceLee P. L. Y. ( 1974 ) Single column system for accelerated amino acid analysis of physiological fluids using five lithium buffers. Biochem. Med. 10, 107 – 121.en_US
dc.identifier.citedreferenceMartin-Du Pan F., Mauron C., Giaeser B., and Wurtman R. J. ( 1982 ) Effect of various oral glucose doses on plasma neutral amino acid levels. Metabolism 31, 937 – 943.en_US
dc.identifier.citedreferenceMazziotta J. C, Huang S.-C, Phelps M. E., Carson R. E., MacDonald N. S., and Mahoney K. ( 1985 ) A noninvasive positron computed omography technique using oxygen-15-labeled water for the evaluation of neurobehavioral task batteries. J. Cereb. Blood Flow Metab. S, 70 – 78.en_US
dc.identifier.citedreferenceMoeller J. R., Strother S. C., Siditis J. J., and Rottenberg D. A. ( 1987 ) Scaled subprofile model: a statistical approach to the analysis of functional patterns in positron emission tomographic data. J. Cereb. Blood Flow Metab. 7, 649 – 658.en_US
dc.identifier.citedreferenceMondino A., Bongiovanni G., and Fumero S. ( 1975 ) A new approach for obtaining total tryptophan recovery in plasma samples deproteinized with sulphosalicylic acid. J. Chromatogr. 104, 297 – 302.en_US
dc.identifier.citedreferenceOldendorf W. H. ( 1970 ) Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res. 24, 372 – 376.en_US
dc.identifier.citedreferenceOldendorf W. H. and Braun L. D. ( 1976 ) Tryptamine and 3 H-water as diffusible internal standards for measuring brain extraction of radio-labeled substances following carotid injection. Brain Res. 113, 219 – 224.en_US
dc.identifier.citedreferencePardridge W. M. ( 1977 ) Kinetics of competitive inhibition of neutral amino acid transport across the blood brain barrier. J. Neurochem. 28, 103 – 108.en_US
dc.identifier.citedreferencePardridge W. M. ( 1983 ) Brain metabolism: a perspective for the blood brain barrier. Physiol. Rev. 63, 1481 – 1535.en_US
dc.identifier.citedreferencePardridge W. M. ( 1986 ) Mechanisms of neuropeptide interaction with the blood brain barrier. Ann. NYAcad. Sci. 481, 231 – 249.en_US
dc.identifier.citedreferenceRampini S., Anders P. W., Courtis H. C, and Marthaler T. ( 1969 ) Detection of heterozygote for phenylketonuria by column chro-matography and discriminatory analysis. Pediatr. Res. 3, 287 – 297.en_US
dc.identifier.citedreferenceSmith Q. R., Momma S., Aoyagi M., and Rapoport S. I. ( 1987 ) Kinetics of neutral amino acid transport across the blood-brain barrier. J. Neurochem, 49, 1651 – 1658.en_US
dc.identifier.citedreferenceStegink L. D., Fyler L. J. Jr., and Baker G. L. ( 1977 ) Effect of as-partame and aspartate loading upon plasma and erythrocyte free amino acid levels in normal adult volunteers. J. Nutr. 107, 1837 – 1845.en_US
dc.identifier.citedreferenceWashburn L. C., Ringenberg R. E., Sun T. T., and Hayes R. L. ( 1981 ) 11 C-Labeled 1-aminocyciohexanecarboxylic acid ( 11 C-ACHC), a potential agent for studies of amino acid transport in the brain. J. Label. Comp. Radiopharm. 18, 13 – 14.en_US
dc.identifier.citedreferenceWashburn L. C, Sun T. T., Byrd B. L., Rafter J. J., Hayes R. L., Frey K. A., and Agranoff B. W. ( 1982 ) 11 C-ACHC, a potential agent for positron tomographic measurement of brain amino acid transport, in Nuclear Medicine and Biology, Vol. I ( Raynaud C., ed ), pp. 642 – 645. Pergamon Press, Paris.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.