Show simple item record

Tissue-type plasminogen activator requires a co-receptor to enhance NMDA receptor function

dc.contributor.authorSamson, Andre L.en_US
dc.contributor.authorNevin, Simon T.en_US
dc.contributor.authorCroucher, Daviden_US
dc.contributor.authorNiego, Be’erien_US
dc.contributor.authorDaniel, Philip B.en_US
dc.contributor.authorWeiss, Thomas W.en_US
dc.contributor.authorMoreno, Elizaen_US
dc.contributor.authorMonard, Denisen_US
dc.contributor.authorLawrence, Daniel A.en_US
dc.contributor.authorMedcalf, Robert L.en_US
dc.date.accessioned2010-04-01T15:12:34Z
dc.date.available2010-04-01T15:12:34Z
dc.date.issued2008-11en_US
dc.identifier.citationSamson, Andre L.; Nevin, Simon T.; Croucher, David; Niego, Be’eri; Daniel, Philip B.; Weiss, Thomas W.; Moreno, Eliza; Monard, Denis; Lawrence, Daniel A.; Medcalf, Robert L. (2008). "Tissue-type plasminogen activator requires a co-receptor to enhance NMDA receptor function." Journal of Neurochemistry 107(4): 1091-1101. <http://hdl.handle.net/2027.42/65678>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65678
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18796005&dopt=citationen_US
dc.format.extent595845 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 International Society for Neurochemistryen_US
dc.subject.otherLow-density Lipoprotein Receptor Familyen_US
dc.subject.otherNMDA Receptoren_US
dc.subject.otherPlasminen_US
dc.subject.otherSerine Protease Inhibitoren_US
dc.subject.otherTissue-type Plasminogen Activatoren_US
dc.titleTissue-type plasminogen activator requires a co-receptor to enhance NMDA receptor functionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum¶ University of Michigan Medical School, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother* Australian Centre for Blood Diseases, Monash University, AMREP, Melbourne, Australiaen_US
dc.contributor.affiliationother† Queensland Brain Institute, The University of Queensland, Brisbane, Australiaen_US
dc.contributor.affiliationother† School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australiaen_US
dc.contributor.affiliationother§ Friedrich Miescher Institute for Biomedical Research, Basel, Switzerlanden_US
dc.identifier.pmid18796005en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65678/1/j.1471-4159.2008.05687.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2008.05687.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBackes B. J., Harris J. L., Leonetti F., Craik C. S. and Ellman J. A. ( 2000 ) Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin. Nat. Biotechnol. 18, 187 – 193.en_US
dc.identifier.citedreferenceBenchenane K., Castel H., Boulouard M. et al. ( 2007 ) Anti-NR1 N-terminal-domain vaccination unmasks the crucial action of tPA on NMDA-receptor-mediated toxicity and spatial memory. J. Cell Sci. 120, 578 – 585.en_US
dc.identifier.citedreferenceBoucher P., Gotthardt M., Li W. P., Anderson R. G. and Herz J. ( 2003 ) LRP: role in vascular wall integrity and protection from atherosclerosis. Science 300, 329 – 332.en_US
dc.identifier.citedreferenceClark R. J., Fischer H., Nevin S. T., Adams D. J. and Craik D. J. ( 2006 ) The synthesis, structural characterization, and receptor specificity of the alpha-conotoxin Vc1.1. J. Biol. Chem. 281, 23254 – 23263.en_US
dc.identifier.citedreferenceFernandez-Monreal M., Lopez-Atalaya J. P., Benchenane K. et al. ( 2004a ) Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen activator-mediated enhancement of N-methyl-D-aspartate receptor signaling. J. Biol. Chem. 279, 50850 – 50856.en_US
dc.identifier.citedreferenceFernandez-Monreal M., Lopez-Atalaya J. P., Benchenane K. et al. ( 2004b ) Is tissue-type plasminogen activator a neuromodulator? Mol. Cell. Neurosci. 25, 594 – 601.en_US
dc.identifier.citedreferenceFredriksson L., Li H., Fieber C., Li X. and Eriksson U. ( 2004 ) Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO J. 23, 3793 – 3802.en_US
dc.identifier.citedreferenceGingrich M. B., Junge C. E., Lyuboslavsky P. and Traynelis S. F. ( 2000 ) Potentiation of NMDA receptor function by the serine protease thrombin. J. Neurosci. 20, 4582 – 4595.en_US
dc.identifier.citedreferenceGosalia D. N., Salisbury C. M., Maly D. J., Ellman J. A. and Diamond S. L. ( 2005 ) Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays. Proteomics 5, 1292 – 1298.en_US
dc.identifier.citedreferenceGranelli-Piperno A. and Reich E. ( 1978 ) A study of proteases and protease-inhibitor complexes in biological fluids. J. Exp. Med. 148, 223 – 234.en_US
dc.identifier.citedreferenceHarris J. L., Backes B. J., Leonetti F., Mahrus S., Ellman J. A. and Craik C. S. ( 2000 ) Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl Acad. Sci. USA 97, 7754 – 7759.en_US
dc.identifier.citedreferenceHastings G. A., Coleman T. A., Haudenschild C. C., Stefansson S., Smith E. P., Barthlow R., Cherry S., Sandkvist M. and Lawrence D. A. ( 1997 ) Neuroserpin, a brain-associated inhibitor of tissue plasminogen activator is localized primarily in neurons. Implications for the regulation of motor learning and neuronal survival. J. Biol. Chem. 272, 33062 – 33067.en_US
dc.identifier.citedreferenceHerz J. and Strickland D. K. ( 2001 ) LRP: a multifunctional scavenger and signaling receptor. J. Clin. Invest. 108, 779 – 784.en_US
dc.identifier.citedreferenceHorn I. R., van den Berg B. M., van der Meijden P. Z., Pannekoek H. and van Zonneveld A. J. ( 1997 ) Molecular analysis of ligand binding to the second cluster of complement-type repeats of the low density lipoprotein receptor-related protein. Evidence for an allosteric component in receptor-associated protein-mediated inhibition of ligand binding. J. Biol. Chem. 272, 13608 – 13613.en_US
dc.identifier.citedreferenceHu K., Yang J., Tanaka S., Gonias S. L., Mars W. M. and Liu Y. ( 2006 ) Tissue-type plasminogen activator acts as a cytokine that triggers intracellular signal transduction and induces matrix metalloproteinase-9 gene expression. J. Biol. Chem. 281, 2120 – 2127.en_US
dc.identifier.citedreferenceHuggins D. J. and Grant G. H. ( 2005 ) The function of the amino terminal domain in NMDA receptor modulation. J. Mol. Graph Model 23, 381 – 388.en_US
dc.identifier.citedreferenceKloda A. and Adams D. J. ( 2005 ) Voltage-dependent inhibition of recombinant NMDA receptor-mediated currents by 5-hydroxytryptamine. Br. J. Pharmacol. 144, 323 – 330.en_US
dc.identifier.citedreferenceKumada M., Niwa M., Hara A., Matsuno H., Mori H., Ueshima S., Matsuo O., Yamamoto T. and Kozawa O. ( 2005 ) Tissue type plasminogen activator facilitates NMDA-receptor-mediated retinal apoptosis through an independent fibrinolytic cascade. Invest. Ophthalmol. Vis. Sci. 46, 1504 – 1507.en_US
dc.identifier.citedreferenceKvajo M., Albrecht H., Meins M., Hengst U., Troncoso E., Lefort S., Kiss J. Z., Petersen C. C. and Monard D. ( 2004 ) Regulation of brain proteolytic activity is necessary for the in vivo function of NMDA receptors. J. Neurosci. 24, 9734 – 9743.en_US
dc.identifier.citedreferenceLawrence D. A., Ginsburg D., Day D. E., Berkenpas M. B., Verhamme I. M., Kvassman J. O. and Shore J. D. ( 1995 ) Serpin-protease complexes are trapped as stable acyl-enzyme intermediates. J. Biol. Chem. 270, 25309 – 25312.en_US
dc.identifier.citedreferenceLiot G., Benchenane K., Leveille F. et al. ( 2004 ) 2,7-Bis-(4-amidinobenzylidene)-cycloheptan-1-one dihydrochloride, tPA stop, prevents tPA-enhanced excitotoxicity both in vitro and in vivo. J. Cereb. Blood Flow Metab. 24, 1153 – 1159.en_US
dc.identifier.citedreferenceLiu D., Cheng T., Guo H., Fernandez J. A., Griffin J. H., Song X. and Zlokovic B. V. ( 2004 ) Tissue plasminogen activator neurovascular toxicity is controlled by activated protein C. Nat. Med. 10, 1379 – 1383.en_US
dc.identifier.citedreferenceLochner J. E., Honigman L. S., Grant W. F., Gessford S. K., Hansen A. B., Silverman M. A. and Scalettar B. A. ( 2006 ) Activity-dependent release of tissue plasminogen activator from the dendritic spines of hippocampal neurons revealed by live-cell imaging. J. Neurobiol. 66, 564 – 577.en_US
dc.identifier.citedreferenceMakarova A., Mikhailenko I., Bugge T. H., List K., Lawrence D. A. and Strickland D. K. ( 2003 ) The low density lipoprotein receptor-related protein modulates protease activity in the brain by mediating the cellular internalization of both neuroserpin and neuroserpin-tissue-type plasminogen activator complexes. J. Biol. Chem. 278, 50250 – 50258.en_US
dc.identifier.citedreferenceMartin A. M., Kuhlmann C., Trossbach S. et al. ( 2008 ) The functional role of the second NPXY motif of the LRP1 beta -chain in tPA-mediated activation of NMDA receptors. J. Biol. Chem. 283, 12004 – 12013.en_US
dc.identifier.citedreferenceMatys T. and Strickland S. ( 2003 ) Tissue plasminogen activator and NMDA receptor cleavage. Nat. Med. 9, 371 – 372.en_US
dc.identifier.citedreferenceMay P., Rohlmann A., Bock H. H. et al. ( 2004 ) Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol. Cell. Biol. 24, 8872 – 8883.en_US
dc.identifier.citedreferenceMedina M. G., Ledesma M. D., Dominguez J. E., Medina M., Zafra D., Alameda F., Dotti C. G. and Navarro P. ( 2005 ) Tissue plasminogen activator mediates amyloid-induced neurotoxicity via Erk1/2 activation. EMBO J. 24, 1706 – 1716.en_US
dc.identifier.citedreferenceMeier R., Spreyer P., Ortmann R., Harel A. and Monard D. ( 1989 ) Induction of glia-derived nexin after lesion of a peripheral nerve. Nature 342, 548 – 550.en_US
dc.identifier.citedreferenceMelchor J. P. and Strickland S. ( 2005 ) Tissue plasminogen activator in central nervous system physiology and pathology. Thromb. Haemost. 93, 655 – 660.en_US
dc.identifier.citedreferenceNicole O., Docagne F., Ali C., Margaill I., Carmeliet P., MacKenzie E. T., Vivien D. and Buisson A. ( 2001 ) The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat. Med. 7, 59 – 64.en_US
dc.identifier.citedreferenceNINDS ( 1995 ) Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N. Engl. J. Med. 333, 1581 – 1587.en_US
dc.identifier.citedreferenceNorris E. H. and Strickland S. ( 2007 ) Modulation of NR2B-regulated contextual fear in the hippocampus by the tissue plasminogen activator system. Proc. Natl Acad. Sci. USA 104, 13473 – 13478.en_US
dc.identifier.citedreferenceOrth K., Willnow T., Herz J., Gething M. J. and Sambrook J. ( 1994 ) Low density lipoprotein receptor-related protein is necessary for the internalization of both tissue-type plasminogen activator-inhibitor complexes and free tissue-type plasminogen activator. J. Biol. Chem. 269, 21117 – 21122.en_US
dc.identifier.citedreferencePark L., Gallo E. F., Anrather J., Wang G., Norris E. H., Paul J., Strickland S. and Iadecola C. ( 2008 ) Key role of tissue plasminogen activator in neurovascular coupling. Proc. Natl Acad. Sci. USA 105, 1073 – 1078.en_US
dc.identifier.citedreferencePawlak R., Nagai N., Urano T., Napiorkowska-Pawlak D., Ihara H., Takada Y., Collen D. and Takada A. ( 2002 ) Rapid, specific and active site-catalyzed effect of tissue-plasminogen activator on hippocampus-dependent learning in mice. Neuroscience 113, 995 – 1001.en_US
dc.identifier.citedreferencePawlak R., Melchor J. P., Matys T., Skrzypiec A. E. and Strickland S. ( 2005a ) Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors. Proc. Natl Acad. Sci. USA 102, 443 – 448.en_US
dc.identifier.citedreferencePawlak R., Rao B. S., Melchor J. P., Chattarji S., McEwen B. and Strickland S. ( 2005b ) Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus. Proc. Natl Acad. Sci. USA 102, 18201 – 18206.en_US
dc.identifier.citedreferencePolavarapu R., Gongora M. C., Yi H., Ranganthan S., Lawrence D. A., Strickland D. and Yepes M. ( 2007 ) Tissue-type plasminogen activator-mediated shedding of astrocytic low-density lipoprotein receptor-related protein increases the permeability of the neurovascular unit. Blood 109, 3270 – 3278.en_US
dc.identifier.citedreferenceQiu Z., Strickland D. K., Hyman B. T. and Rebeck G. W. ( 2002 ) alpha 2-Macroglobulin exposure reduces calcium responses to N-methyl-D-aspartate via low density lipoprotein receptor-related protein in cultured hippocampal neurons. J. Biol. Chem. 277, 14458 – 14466.en_US
dc.identifier.citedreferenceQiu Z., Crutcher K. A., Hyman B. T. and Rebeck G. W. ( 2003 ) ApoE isoforms affect neuronal N-methyl-D-aspartate calcium responses and toxicity via receptor-mediated processes. Neuroscience 122, 291 – 303.en_US
dc.identifier.citedreferenceReddrop C., Moldrich R. X., Beart P. M., Farso M., Liberatore G. T., Howells D. W., Petersen K. U., Schleuning W. D. and Medcalf R. L. ( 2005 ) Vampire bat salivary plasminogen activator (desmoteplase) inhibits tissue-type plasminogen activator-induced potentiation of excitotoxic injury. Stroke 36, 1241 – 1246.en_US
dc.identifier.citedreferenceRossignol P., Ho-Tin-Noe B., Vranckx R., Bouton M. C., Meilhac O., Lijnen H. R., Guillin M. C., Michel J. B. and Angles-Cano E. ( 2004 ) Protease nexin-1 inhibits plasminogen activation-induced apoptosis of adherent cells. J. Biol. Chem. 279, 10346 – 10356.en_US
dc.identifier.citedreferenceSamson A. L. and Medcalf R. L. ( 2006 ) Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron 50, 673 – 678.en_US
dc.identifier.citedreferenceSchaefer U., Machida T., Vorlova S., Strickland S. and Levi R. ( 2006 ) The plasminogen activator system modulates sympathetic nerve function. J. Exp. Med. 203, 2191 – 2200.en_US
dc.identifier.citedreferenceSchaefer U., Vorlova S., Machida T., Melchor J. P., Strickland S. and Levi R. ( 2007 ) Modulation of sympathetic activity by tissue plasminogen activator is independent of plasminogen and urokinase. J. Pharmacol. Exp. Ther. 322, 265 – 273.en_US
dc.identifier.citedreferenceSu E. J., Fredriksson L., Geyer M. et al. ( 2008 ) Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat. Med. 14, 731 – 737.en_US
dc.identifier.citedreferenceVerheijen J. H., Mullaart E., Chang G. T., Kluft C. and Wijngaards G. ( 1982 ) A simple, sensitive spectrophotometric assay for extrinsic (tissue-type) plasminogen activator applicable to measurements in plasma. Thromb. Haemost. 48, 266 – 269.en_US
dc.identifier.citedreferenceVincent V. A., Lowik C. W., Verheijen J. H., de Bart A. C., Tilders F. J. and Van Dam A. M. ( 1998 ) Role of astrocyte-derived tissue-type plasminogen activator in the regulation of endotoxin-stimulated nitric oxide production by microglial cells. Glia 22, 130 – 137.en_US
dc.identifier.citedreferenceWang Y. F., Tsirka S. E., Strickland S., Stieg P. E., Soriano S. G. and Lipton S. A. ( 1998 ) Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat. Med. 4, 228 – 231.en_US
dc.identifier.citedreferenceWeiss T. W., Samson A. L., Niego B., Daniel P. B. and Medcalf R. L. ( 2006 ) Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo. FASEB J. 20, 2369 – 2371.en_US
dc.identifier.citedreferenceWolosker H., Panizzutti R. and De Miranda J. ( 2002 ) Neurobiology through the looking-glass: D-serine as a new glial-derived transmitter. Neurochem. Int. 41, 327 – 332.en_US
dc.identifier.citedreferenceXia H., Hornby Z. D. and Malenka R. C. ( 2001 ) An ER retention signal explains differences in surface expression of NMDA and AMPA receptor subunits. Neuropharmacology 41, 714 – 723.en_US
dc.identifier.citedreferenceXue F. and Seto C. T. ( 2005 ) Selective inhibitors of the serine protease plasmin: probing the S3 and S3’ subsites using a combinatorial library. J. Med. Chem. 48, 6908 – 6917.en_US
dc.identifier.citedreferenceYang Y., Ge W., Chen Y., Zhang Z., Shen W., Wu C., Poo M. and Duan S. ( 2003 ) Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc. Natl Acad. Sci. USA 100, 15194 – 15199.en_US
dc.identifier.citedreferenceYepes M., Sandkvist M., Coleman T. A., Moore E., Wu J. Y., Mitola D., Bugge T. H. and Lawrence D. A. ( 2002 ) Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. J. Clin. Invest. 109, 1571 – 1578.en_US
dc.identifier.citedreferenceYepes M., Sandkvist M., Moore E. G., Bugge T. H., Strickland D. K. and Lawrence D. A. ( 2003 ) Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J. Clin. Invest. 112, 1533 – 1540.en_US
dc.identifier.citedreferenceZhuo M., Holtzman D. M., Li Y., Osaka H., DeMaro J., Jacquin M. and Bu G. ( 2000 ) Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J. Neurosci. 20, 542 – 549.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.