Show simple item record

FORMATION OF RESTING SPORES BY LEPTOCYLINDRUS DANICUS (BACILLARIOPHYCEAE) IN A CONTROLLED EXPERIMENTAL ECOSYSTEM 1

dc.contributor.authorDavis, Curtiss O.en_US
dc.contributor.authorHollibaugh, James T.en_US
dc.contributor.authorSeibert, Don L. R.en_US
dc.contributor.authorThomas, William H.en_US
dc.contributor.authorHarrison, Paul J.en_US
dc.date.accessioned2010-04-01T15:13:36Z
dc.date.available2010-04-01T15:13:36Z
dc.date.issued1980-06en_US
dc.identifier.citationDavis, Curtiss O . ; Hollibaugh, James T . ; Seibert, Don L. R . ; Thomas, William H . ; Harrison, Paul J . (1980). "FORMATION OF RESTING SPORES BY LEPTOCYLINDRUS DANICUS (BACILLARIOPHYCEAE) IN A CONTROLLED EXPERIMENTAL ECOSYSTEM 1 ." Journal of Phycology 16(2): 296-302. <http://hdl.handle.net/2027.42/65696>en_US
dc.identifier.issn0022-3646en_US
dc.identifier.issn1529-8817en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65696
dc.description.abstractLeptocylindrus danicus Cleve became the dominant phytoplankton species, comprising 70–80% of the total assemblage, in one of the CEPEX Controlled Experimental Ecosystems (CEE) at Saanich Inlet, British Columbia (Canada). In the first week of June, when nitrate levels were reduced below 0.5 Μm, the majority of the L. danicus cells present in the CEE formed resting spores. The spores were heavily armored with spines and appeared to sink unmolested to the bottom of the CEE. Four continuous cultures were started with an inoculum from the CEE and, in a 24 h period when N became depleted, 86% of the L. danicus present (∼80% of the total phytoplankton assemblage) formed resting spores. A daily dilution culture with nutrients kept at saturating levels was started at the same time from the same inoculum and continued for 2 wk beyond the spore formation event in the N-limited cultures. No spores were observed in the nutrient-saturated culture, indicating that N limitation was necessary to trigger spore formation. Spores were kept in the dark at 3 and 10 C. After 36 and 97 days, a large percentage of the spores germinated. After 214 days, >1% of the spores were still capable of germination. Laboratory studies with L. danicus isolated from the CEE confirmed that N limitation was the primary factor triggering spore formation. Microscope observations of these cultures indicated that the spores were formed by auxospores following sexual reproduction.en_US
dc.format.extent1117873 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1980, by the Phycological Society of America, Inc.en_US
dc.subject.otherCEPEXen_US
dc.subject.otherControlled Experiment Ecosystemen_US
dc.subject.otherDiatomen_US
dc.subject.otherLeptocylindrusen_US
dc.subject.otherNitrogen Limitationen_US
dc.subject.otherResting Spore, Leptocylindrusen_US
dc.titleFORMATION OF RESTING SPORES BY LEPTOCYLINDRUS DANICUS (BACILLARIOPHYCEAE) IN A CONTROLLED EXPERIMENTAL ECOSYSTEM 1en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumGreat Lakes Research Division, The University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationotherInstitute of Marine Resources, Scripps Institution of Oceanography, La Jolla, California 92093 USAen_US
dc.contributor.affiliationotherDepartment of Botany and Department of Oceanography, University of British Columbia, Vancouver, B. C. V6T 1W5, Canadaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65696/1/j.1529-8817.1980.tb03034.x.pdf
dc.identifier.doi10.1111/j.1529-8817.1980.tb03034.xen_US
dc.identifier.sourceJournal of Phycologyen_US
dc.identifier.citedreferenceDavis C. O., Harrison, P. J. & Dugdale, R. C. 1973. Continuous culture of marine diatoms under silicate limitation. I. Synchronized life cycle of Skelelonema costatum. J. Phycol. 9 : 175 – 80.en_US
dc.identifier.citedreferenceDrebes, G. 1966. On the life history of the marine plankton diatom Stephanopyxis palmeriana. Helgol. Wiss. Meeresunters. 13 : 101 – 14.en_US
dc.identifier.citedreferenceDrebes, G. 1977. Sexuality. In Werner, D., [ Ed. ] The Biology of Diatoms, Blackwell Scientific Publs. Oxford, 250 – 83.en_US
dc.identifier.citedreferenceDurbin, E. G. 1978. Aspects of the biology of resting spores of Thatassiosira nordenskioeldii and Detonula confervacea. Mar. Biol. 45 : 31 – 7.en_US
dc.identifier.citedreferenceGran, H. H. 1915a. The plankton production in the North European waters in the spring of 1911. Bull. Planktonique pour l'ÁnnÉe 1912, Conseil Perm, pour l'Éxploration de la Mere. Copenhagen. 1 – 46.en_US
dc.identifier.citedreferenceGran, H. H. 1915b. The plankton production in the North European waters in the spring of 1912. Bull. Planktonique pour l'ÁnnÉe 1912, Conseil Perm, pour l'Éaxploration de la Mere. Copenhagen. 1 – 146.en_US
dc.identifier.citedreferenceGucluer, S. M. & Gross, M. G. 1964. Recent marine sediments in Saanich Inlet, a stagnant marine basin. Limnol. Oceanogr. 9 : 359 – 76.en_US
dc.identifier.citedreferenceGuillard, R. R. L. & Ryther, J. H. 1962. Studies of marine plank-tonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8 : 229 – 39.en_US
dc.identifier.citedreferenceHargraves, P. E. 1972. Studies on marine plankton diatoms. I. Chaetoceros diadema (Ehr.) Gran: life cycle, structural morphology and regional distribution. Phycologia 11 : 247 – 57.en_US
dc.identifier.citedreferenceHargraves, P. E. 1976. Studies on marine plankton diatoms. II. Resting spore morphology. J. Phycol. 12 : 118 – 28.en_US
dc.identifier.citedreferenceHargraves, P. E. & French, F. 1975. Observations on the survival of diatom resting spores. Nova Hedwigia Beihefte 53 : 229 – 38.en_US
dc.identifier.citedreferenceHargraves, P. E. & French, F. 1977. Resistance of diatom resting spores to grazing. J. Phycol. 13 ( suppl. ): 27.en_US
dc.identifier.citedreferenceHarrison, P. J. & Davis, C. O. 1979. The use of outdoor phytoplankton continuous cultures to analyze factors influencing species selection. J. Exp. Mar. Biol. Ecol. 41 : 9 – 23.en_US
dc.identifier.citedreferenceMenzel, D. W. & Case, J. 1977. Concept and design: controlled ecosystem pollution experiment. Bull. Mar. Sci. 27 : 1 – 7.en_US
dc.identifier.citedreferenceMullin I. B., & Riley, J. P. 1955. The colorimetric determination of silicate with special reference to sea and natural waters. Anal. Chim. Acta 12 : 162 – 76.en_US
dc.identifier.citedreferenceMurphy, J. & Riley, J. P. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27 : 31 – 6.en_US
dc.identifier.citedreferenceRyther, J. H. & Dunstan, W. M. 1971. Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science 171 : 1008 – 13.en_US
dc.identifier.citedreferenceSmetacek, V., BrÖckel, K. von, Zeitzschel, B. & Zenk, W. 1978. Sedimentation of particulate matter during a phytoplankton spring bloom in relation to the hydrographical regime. Mar. Biol. 47 : 211 – 26.en_US
dc.identifier.citedreferenceSolÓrzano, L. 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14 : 799 – 801.en_US
dc.identifier.citedreferenceStosch, H. A. von, & Drebes, G. 1964. Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen. IV. Die Planktondiatomee Stephanopyxis turris ihre Behandlung und Entwicklungsgeschichte. HelgolÄnder Wiss. Meeresunters. 11 : 209 – 57.en_US
dc.identifier.citedreferenceStosch, H. A. von, Theil, G. & Kowallik, K. 1973. Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen. V. Bau und Lebenszyklus von Chaetoceros didymum, mit Beobachtungen Über einige andere Arten der Gattung. Helgol. Wiss. Meeresunters. 25 : 384 – 445.en_US
dc.identifier.citedreferenceStrickland, J. D. H. & Parsons, T. R. 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Board Can. No. 167. 310 pp.en_US
dc.identifier.citedreferenceTaguchi, S. & Hargrave, B. T. 1978. Loss rates of suspended material sedimented in a marine bay. J. Fish. Res. Board Can. 35 : 1614 – 20.en_US
dc.identifier.citedreferenceThomas, W. H. & Seibert, D. L. R. 1977. Effects of copper on the dominance and the diversity of algae: controlled ecosystem pollution experiment. Bull. Mar. Sci. 27 : 23 – 33.en_US
dc.identifier.citedreferenceUtermÖhl, H. 1958. Zur Vervollkommung der quantitativen Phytoplankton Methodik. Internal. Ver. Theor. Angew. Limnol. 9 : 1 – 38.en_US
dc.identifier.citedreferenceWalsh, J. J., Whitledge, T. E., Barvenik, F. W., Wirick, C. D. & Howe, S. O. 1978. Wind events and food chain dynamics within the New York Bight. Limnol. Oceanogr. 23 : 659 – 83.en_US
dc.identifier.citedreferenceWood, E. P., Armstrong, F. A. J. & Richards, F. A. 1967. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. J. Mar. Biol. Assoc. U.K. 47 : 23 – 31.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.