Show simple item record

Lithium Enhances Muscarinic Receptor–Stimulated CDP-Diacylglycerol Formation in Inositol-Depleted SK-N-SH Neuroblastoma Cells

dc.contributor.authorStubbs, Evan B.en_US
dc.contributor.authorAgranoff, Bernard W.en_US
dc.date.accessioned2010-04-01T15:15:08Z
dc.date.available2010-04-01T15:15:08Z
dc.date.issued1993-04en_US
dc.identifier.citationStubbs, Evan B.; Agranoff, Bernard W. (1993). "Lithium Enhances Muscarinic Receptor–Stimulated CDP-Diacylglycerol Formation in Inositol-Depleted SK-N-SH Neuroblastoma Cells." Journal of Neurochemistry 60(4): 1292-1299. <http://hdl.handle.net/2027.42/65723>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65723
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=8455027&dopt=citationen_US
dc.description.abstractThe psychotherapeutic action of Li + in brain has been proposed to result from the depletion of cellular inositol secondary to its block of inositol monophosphatase. This action is thought to slow phosphoinositide resynthesis, thereby attenuating stimulated phosphoinositidase-mediated signal transduction in affected cells. In the present study, the effect of Li + on muscarinic receptor–stimulated formation of the immediate precursor of phosphatidylinositol, CDP-diacylglycerol (CDP-DAG), has been examined in human SK-N-SH neuroblastoma cells that have been cultured under conditions that alter the cellular content of myo -inositol. Resting neuroblastoma cells, like brain cells in vivo, were found to concentrate inositol from the culture medium, achieving an intracellular level of 60.0 ± 4 nmol/mg of protein. The addition of carbachol to [ 3 H]cytidine-prelabeled cells elicited a four- to fivefold increase in the accumulation of labeled CDP-DAG. This stimulated formation of [ 3 H]CDP-DAG was completely blocked by the addition of 10 Μ M atropine, was not dependent on the presence of Li + , nor was it affected by co-incubation with myo -inositol. This result was in sharp contrast to findings in rat brain slices, in which carbachol-stimulated formation of [ 3 H]CDP-DAG was potentiated ∼ 10-fold by Li + and substantially reduced by coincubation with inositol. The formation of [ 3 H]CDP-DAG in labeled SK-N-SH cells by carbachol was both concentration and time dependent. The order of efficacy of muscarinic ligands in stimulating [ 3 H]-CDP-DAG accumulation paralleled that established in these cells for inositol phosphate accumulation, i.e., carbachol ≥ oxotremorine-M > bethanecol ≥ arecoline > oxotremorine > pilocarpine. Extended culture of the SK-N-SH cells in an inositol-free chemically defined growth medium progressively reduced the intracellular inositol content to <5 nmol/mg of protein, a level comparable with that seen in cortical slices. In these inositol-depleted cells, Li + potentiated carbachol-stimulated [ 3 H]CDP-DAG formation, and this effect was completely reversed by coincubation with inositol (EC 50 0.2 m M ). The present study thus demonstrates, in the same cultured cell line, the effects of normal and reduced intracellular inositol levels on the ability of Li + to attenuate phosphoinositide resynthesis, as inferred from [ 3 H]CDP-DAG accumulation. The results indicate that Li + can lead to a slowing of stimulated phosphoinositide turnover in neuroblastoma cells, provided that the intracellular inositol content has been significantly reduced.en_US
dc.format.extent954391 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1993 International Society for Neurochemistryen_US
dc.subject.otherCDP-diacylglycerolen_US
dc.subject.otherInositolen_US
dc.subject.otherLithiumen_US
dc.subject.otherMuscarinicen_US
dc.subject.otherNeuroblastomaen_US
dc.subject.otherPhosphoinositidesen_US
dc.titleLithium Enhances Muscarinic Receptor–Stimulated CDP-Diacylglycerol Formation in Inositol-Depleted SK-N-SH Neuroblastoma Cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Biological Chemistry and Psychiatry and Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid8455027en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65723/1/j.1471-4159.1993.tb03289.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1993.tb03289.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAllison J. H. and Stewart M. A. ( 1971 ) Reduced brain inositol in lithium-treated rats. Nature 233, 267 – 268.en_US
dc.identifier.citedreferenceAllison J. H., Blisner M. E., Holland W. H., Hipps P. P., and Sherman W. R. ( 1976 ) Increased brain myo-inositol 1-phosphate in lithium-treated rats. Biochem. Biophys. Res. Commun. 71, 664 – 670.en_US
dc.identifier.citedreferenceAvissar S., Schreiber G., Danon A., and Bellmaker R. H. ( 1988 ) Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 331, 440 – 442.en_US
dc.identifier.citedreferenceAvissar S., Murphy D. L., and Schreiber G. ( 1991 ) Magnesium reversal of lithium inhibition of Β-adrenergic and muscarinic receptor coupling to G proteins. Biochem. Pharmacol. 412, 171 – 175.en_US
dc.identifier.citedreferenceBerridge M. J., Downes C. P., and Hanley M. R. ( 1982 ) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587 – 595.en_US
dc.identifier.citedreferenceBottenstein J. and Sato G. ( 1979 ) Growth of a rat neuroblastoma cell line in serum-free supplemented media. Proc. Natl. Acad. Sci. USA 76, 514 – 517.en_US
dc.identifier.citedreferenceDownes C. P. and Stone M. A. ( 1986 ) Lithium-induced reduction in intracellular inositol supply in cholinergically stimulated parotid gland. Biochem. J. 234, 199 – 204.en_US
dc.identifier.citedreferenceDrummond A. H. and Raeburn C. A. ( 1984 ) The interaction of thyrotropin-releasing hormone–stimulated lipid metabolism in GH 3 pituitary tumour cells. Biochem. J. 224, 129 – 136.en_US
dc.identifier.citedreferenceEbstein R. P., Hermoni M., and Belmaker R. H. ( 1980 ) The effect of lithium on noradrenaline-induced cyclic AMP accumulation in rat brain: inhibition after chronic treatment and absence of supersensitivity. J. Pharmacol. Exp. Ther. 213, 161 – 167.en_US
dc.identifier.citedreferenceFisher S. K. and Snider M. R. ( 1987 ) Differential receptor occupancy requirements for muscarinic cholinergic stimulation of inositol lipid hydrolysis in brain and in neuroblastomas. Mol. Pharmacol. 32, 81 – 90.en_US
dc.identifier.citedreferenceFisher S. K., Heacock A. M., and Agranoff B. W. ( 1992 ) Inositol lipids and signal transduction in the nervous system: an update. J. Neurochem. 58, 18 – 38.en_US
dc.identifier.citedreferenceForn J. and Valdecasas F. G. ( 1971 ) Effects of lithium on brain adenylate cyclase activity. Biochem. Pharmacol. 20, 2773 – 2779.en_US
dc.identifier.citedreferenceGee N. S., Reid G. G., Jackson R. G., Barnaby R. J., and Ragan C. I. ( 1988 ) Purification and properties of inositol-1,4-bisphosphatase from bovine brain. Biochem. J. 253, 777 – 782.en_US
dc.identifier.citedreferenceGhalayini A. and Eichberg J. ( 1985 ) Purification of phosphatidylinositol synthetase from rat brain by CDP-diacylglycerol affinity chromatography and properties of the purified enzyme. J. Neurochem. 44, 175 – 182.en_US
dc.identifier.citedreferenceGlanville N. T., Byers D. M., Cook H. W., Spence M. W., and Palmer, F. B. St. C. ( 1989 ) Differences in the metabolism of inositol and phosphoinositides by cultured cells of neuronal and glial origin. Biochim. Biophys. Acta 1004, 169 – 179.en_US
dc.identifier.citedreferenceGodfrey P. P. ( 1989 ) Potentiation by lithium of CMP-phosphatidate formation in carbachol-stimulated rat cerebral-cortical slices and its reversal by myo-inositol. Biochem J. 258, 621 – 624.en_US
dc.identifier.citedreferenceGodfrey P. P., McClue S. J., White A. M., Wood A. J., and Grahame-Smith D. G. ( 1989 ) Subacute and chronic in vivo lithium treatment inhibits agonist- and sodium fluoride-stimulated inositol phosphate production in rat cortex. J. Neurochem. 52, 498 – 506.en_US
dc.identifier.citedreferenceHallcher L. M. and Sherman W. R. ( 1980 ) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255, 10896 – 10901.en_US
dc.identifier.citedreferenceHeacock A. M., Fisher S. K., and Agranoff B. W. ( 1987 ) Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover. J. Neurochem. 48, 1904 – 1911.en_US
dc.identifier.citedreferenceHonchar M. P., Ackermann K. E., and Sherman W. R. ( 1989 ) Chronically administered lithium alters neither myo-inositol monophosphatase activity nor phosphoinositide levels in rat brain. J. Neurochem. 53, 590 – 594.en_US
dc.identifier.citedreferenceImai A. and Gershengorn M. C. ( 1987 ) Independent phosphatidyl-inositol synthesis in pituitary plasma membrane and endoplasmic reticulum. Nature 325, 726 – 728.en_US
dc.identifier.citedreferenceInhorn R. C. and Majerus P. W. ( 1987 ) Inositol polyphosphate 1-phosphatase from calf brain. J. Biol. Chem. 262, 15946 – 15952.en_US
dc.identifier.citedreferenceKennedy E. D., Challiss R. A. J., and Nahorski S. R. ( 1989 ) Lithium reduces the accumulation of inositol polyphosphate second messengers following cholinergic stimulation of cerebral cortex slices. J. Neurochem. 53, 1652 – 1655.en_US
dc.identifier.citedreferenceKennedy E. D., Challiss R. A. J., Ragan C. I., and Nahorski S. R. ( 1990 ) Reduced inositol polyphosphate accumulation and inositol supply induced by lithium in stimulated cerebral cortex slices. Biochem. J. 267, 781 – 786.en_US
dc.identifier.citedreferenceMount J. N. and Laker M. F. ( 1981 ) Estimation of sugar alcohols by gas-liquid chromatography using a modified acetylation procedure. J. Chromatogr. 226, 191 – 197.en_US
dc.identifier.citedreferenceMurthy P. P. N. and Agranoff B. W. ( 1982 ) Stereospecific synthesis and enzyme studies of CDP-diacylglycerols. Biochim. Biophys. Acta 712, 473 – 483.en_US
dc.identifier.citedreferenceSherman W. R., Leavitt A. L., Honchar M. P., Hallcher L. M., and Phillips B. E. ( 1981 ) Evidence that lithium alters phosphoinositide metabolism: chronic administration elevates primarily D-myo-inositol-1-phosphate in cerebral cortex of the rat. J. Neurochem. 36, 1947 – 1951.en_US
dc.identifier.citedreferenceSherman W. R., Munsell L. Y., Gish B. G., and Honchar M. P. ( 1985 ) Effects of systemically administered lithium on phosphoinositide metabolism in rat brain, kidney, and testis, J. Neurochem. 44, 798 – 807.en_US
dc.identifier.citedreferenceSherman W. R., Gish B. G., Honchar M. P., and Munsell L. Y. ( 1986 ) Effects of lithium on phosphoinositide metabolism in vivo. Fed. Proc. 45, 2639 – 2646.en_US
dc.identifier.citedreferenceSillence D. J. and Downes C. P. ( 1992 ) Lithium treatment of affective disorders: effects of lithium on the inositol phospholipid and cyclic AMP signalling pathways. Biochim. Biophys. Acta 1138, 46 – 52.en_US
dc.identifier.citedreferenceStubbs E. B. Jr., Heacock A. M., Seguin E. B., and Agranoff B. W. ( 1991 ) Lithium-independent muscarinic receptor activated accumulation of CDP-diacylglycerol in human neuroblastoma cells. Soc. Neurosci. Abstr. 17, 421.en_US
dc.identifier.citedreferenceStubbs E. B. Jr., Walker, B. A. M., Owens C. A., Ward P. A., and Agranoff B. W. ( 1992 ) FMLP-stimulates and ATPΓS potentiates [ 3 H]cytidine 5′-diphosphate-diglyceride accumulation in human neutrophils. J. Immunol. 148, 2242 – 2247.en_US
dc.identifier.citedreferenceSun G. Y., Navidi M., Yoa F.-G., Lin T. N., Orth O. E., Stubbs E. B, Jr., and MacQuarrie R. A. ( 1992 ) Lithium effects on inositol phospholipids and inositol phosphates: evaluation of an in vivo model for assessing polyphosphoinositide turnover in brain. J. Neurochem. 58, 290 – 297.en_US
dc.identifier.citedreferenceWatson S. P., Shipman L., and Godfrey P. P. ( 1990 ) Lithium potentiates agonist formation of [ 3 H]CDP-diacylglycerol in human platelets. Eur. J. Pharmacol. 188, 273 – 276.en_US
dc.identifier.citedreferenceWhitworth P. and Kendall D. A. ( 1988 ) Lithium selectively inhibits muscarinic receptor stimulated tetrakisphosphate accumulation in mouse cerebral cortex slices. J. Neurochem. 51, 258 – 266.en_US
dc.identifier.citedreferenceWhitworth P., Heal D. J., and Kendall D. A. ( 1990 ) The effects of acute and chronic lithium treatment on pilocarpine-stimulated phosphoinositide hydrolysis in mouse brain in vivo. Br. J. Pharmacol. 101, 39 – 44.en_US
dc.identifier.citedreferenceWong Y.-H. H., Kalmbach S. J., Hartman B. K., and Sherman W. R. ( 1987 ) Immunohistochemical staining and enzyme activity measurements show myo-inositol-1-phosphate synthase to be localized in the vasculature of brain. J. Neurochem. 48, 1434 – 1442.en_US
dc.identifier.citedreferenceWood A. J. and Goodwin G. M. ( 1987 ) A review of the biochemical and neuropharmacological actions of lithium. Psychol. Med. 17, 579 – 600.en_US
dc.identifier.citedreferenceZhu X. and Eichberg J. ( 1990 ) A myo-inositol pool utilized for phosphatidylinositol synthesis is depleted in sciatic nerve from rats with streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. USA 87, 9818 – 9822.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.