Show simple item record

Metabotropic glutamate receptor 3 neuroprotection A. Berent-Spillson and J. W. Russell Received June 12, 2006; revised manuscript received October 3, 2006; accepted October 5, 2006. Address correspondence and reprint requests to James W. Russell, Department of Neurology, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201-1595, USA. E-mail: jruss@umich.edu Abbreviations used :  APDC , 2 R ,4 R -4-aminopyrrolidine-2,4-dicarboxylate (specific metabotropic glutamate receptor 3 agonist) ; BSO , buthionine sulfoximine (GSH synthesis inhibitor) ; caspase , cysteine-requiring aspartate protease ; CysGly , cysteinylglycine (GSH degradation product) ; DAPI , 4′-6-diamidino-2-phenylindole ; DCF , dichlorodihydrofluorescein ; DCFDA , 5-(and 6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester ; DHE , dihydroethidium ; DRG , dorsal root ganglion ; FCCP , carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (electron transport uncoupler) ; GCP II/III , glutamate carboxypeptidase II/III ; GSH , glutathione ; GSH-EE , glutathione ethyl ester ; GST , glutathione-s-transferase ; H 2 O 2 , hydrogen peroxide ; HBSS , Hank’s balanced salt solution ; JC-1 , 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide ; MCB , monochlorobimane ; mGluR , metabotropic glutamate receptor ; NAAG , N -acetyl-aspartyl-glutamate ; PBS , phosphate-buffered saline ; PCD , programmed cell death ; Rh123 , rhodamine123 ; ROS , reactive oxygen species ; δψ μ , inner mitochondrial membrane potential . Metabotropic glutamate receptor 3 protects neurons from glucose-induced oxidative injury by increasing intracellular glutathione concentration

dc.contributor.authorBerent-Spillson, Alisonen_US
dc.contributor.authorRussell, James W.en_US
dc.date.accessioned2010-04-01T15:15:56Z
dc.date.available2010-04-01T15:15:56Z
dc.date.issued2007-04en_US
dc.identifier.citationBerent-Spillson, Alison; Russell, James W. (2007). "Metabotropic glutamate receptor 3 neuroprotection A. Berent-Spillson and J. W. Russell Received June 12, 2006; revised manuscript received October 3, 2006; accepted October 5, 2006. Address correspondence and reprint requests to James W. Russell, Department of Neurology, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201-1595, USA. E-mail: jruss@umich.edu Abbreviations used :  APDC , 2 R ,4 R -4-aminopyrrolidine-2,4-dicarboxylate (specific metabotropic glutamate receptor 3 agonist) ; BSO , buthionine sulfoximine (GSH synthesis inhibitor) ; caspase , cysteine-requiring aspartate protease ; CysGly , cysteinylglycine (GSH degradation product) ; DAPI , 4′-6-diamidino-2-phenylindole ; DCF , dichlorodihydrofluorescein ; DCFDA , 5-(and 6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester ; DHE , dihydroethidium ; DRG , dorsal root ganglion ; FCCP , carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (electron transport uncoupler) ; GCP II/III , glutamate carboxypeptidase II/III ; GSH , glutathione ; GSH-EE , glutathione ethyl ester ; GST , glutathione-s-transferase ; H 2 O 2 , hydrogen peroxide ; HBSS , Hank’s balanced salt solution ; JC-1 , 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide ; MCB , monochlorobimane ; mGluR , metabotropic glutamate receptor ; NAAG , N -acetyl-aspartyl-glutamate ; PBS , phosphate-buffered saline ; PCD , programmed cell death ; Rh123 , rhodamine123 ; ROS , reactive oxygen species ; δψ μ , inner mitochondrial membrane potential . Metabotropic glutamate receptor 3 protects neurons from glucose-induced oxidative injury by increasing intracellular glutathione concentration." Journal of Neurochemistry 101(2): 342-354. <http://hdl.handle.net/2027.42/65737>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65737
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17402968&dopt=citationen_US
dc.format.extent791896 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2007 The Authors Journal Compilation 2007 International Society for Neurochemistryen_US
dc.subject.otherDiabetic Neuropathy.en_US
dc.subject.otherGlutathioneen_US
dc.subject.otherMetabotropic Glutamate Receptoren_US
dc.subject.otherOxidative Stressen_US
dc.subject.otherSchwann Cellen_US
dc.titleMetabotropic glutamate receptor 3 neuroprotection A. Berent-Spillson and J. W. Russell Received June 12, 2006; revised manuscript received October 3, 2006; accepted October 5, 2006. Address correspondence and reprint requests to James W. Russell, Department of Neurology, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201-1595, USA. E-mail: jruss@umich.edu Abbreviations used :  APDC , 2 R ,4 R -4-aminopyrrolidine-2,4-dicarboxylate (specific metabotropic glutamate receptor 3 agonist) ; BSO , buthionine sulfoximine (GSH synthesis inhibitor) ; caspase , cysteine-requiring aspartate protease ; CysGly , cysteinylglycine (GSH degradation product) ; DAPI , 4′-6-diamidino-2-phenylindole ; DCF , dichlorodihydrofluorescein ; DCFDA , 5-(and 6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester ; DHE , dihydroethidium ; DRG , dorsal root ganglion ; FCCP , carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (electron transport uncoupler) ; GCP II/III , glutamate carboxypeptidase II/III ; GSH , glutathione ; GSH-EE , glutathione ethyl ester ; GST , glutathione-s-transferase ; H 2 O 2 , hydrogen peroxide ; HBSS , Hank’s balanced salt solution ; JC-1 , 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide ; MCB , monochlorobimane ; mGluR , metabotropic glutamate receptor ; NAAG , N -acetyl-aspartyl-glutamate ; PBS , phosphate-buffered saline ; PCD , programmed cell death ; Rh123 , rhodamine123 ; ROS , reactive oxygen species ; δψ μ , inner mitochondrial membrane potential . Metabotropic glutamate receptor 3 protects neurons from glucose-induced oxidative injury by increasing intracellular glutathione concentrationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother† Veterans Affairs Medical Center, Baltimore, Maryland, USAen_US
dc.contributor.affiliationother† Department of Neurology, University of Maryland, Baltimore, Maryland, USAen_US
dc.identifier.pmid17402968en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65737/1/j.1471-4159.2006.04373.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2006.04373.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAllen D. A., Yaqoob M. M. and Harwood S. M. ( 2005 ) Mechanisms of high glucose-induced apoptosis and its relationship to diabetic complications. J. Nutr. Biochem. 16, 705 – 713.en_US
dc.identifier.citedreferenceBaker D. A., Xi Z. X., Shen H., Swanson C. J. and Kalivas P. W. ( 2002 ) The origin and neuronal function of in vivo nonsynaptic glutamate. J. Neurosci. 22, 9134 – 9141.en_US
dc.identifier.citedreferenceBerent Spillson A. and Russell J. W. ( 2003 ) Metabotropic glutamate receptor regulation of neuronal cell death. Exp. Neurol. 184, S97 – S105.en_US
dc.identifier.citedreferenceBerent-Spillson A., Robinson A., Golovoy D., Slusher B., Rojas C. and Russell J. W. ( 2004 ) Protection against glucose-induced neuronal death by NAAG and GCP II inhibition is regulated by mGluR3. J. Neurochem. 89, 90 – 99.en_US
dc.identifier.citedreferenceBrownlee M. ( 2001 ) Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813 – 820.en_US
dc.identifier.citedreferenceBruno V., Sureda F. X., Storto M., Casabona G., Caruso A., Knopfel T., Kuhn R. and Nicoletti F. ( 1997 ) The neuroprotective activity of group-II metabotropic glutamate receptors requires new protein synthesis and involves a glial–neuronal signaling. J. Neurosci. 17, 1891 – 1897.en_US
dc.identifier.citedreferenceCameron N. E., Cotter M. A. and Maxfield E. K. ( 1993 ) Anti-oxidant treatment prevents the development of peripheral nerve dysfunction in streptozotocin-diabetic rats. Diabetologia 36, 299 – 304.en_US
dc.identifier.citedreferenceCartmell J. and Schoepp D. D. ( 2000 ) Regulation of neurotransmitter release by metabotropic glutamate receptors. J. Neurochem. 75, 889 – 907.en_US
dc.identifier.citedreferenceChatterjee S., Noack H., Possel H., Keilhoff G. and Wolf G. ( 1999 ) Glutathione levels in primary glial cultures: monochlorobimane provides evidence of cell type-specific distribution. Glia 27, 152 – 161.en_US
dc.identifier.citedreferenceCowell R. M. and Russell J. W. ( 2004 ) Peripheral neuropathy and the Schwann cell, in Neuroglia ( Kettenmann H. and Ransom B. R., eds ), pp. 573 – 585. Oxford University Press, Oxford.en_US
dc.identifier.citedreferencevan Dam P. S., Van Asbeck B. S., Erkelens D. W., Marx J. J., Gispen W. H. and Bravenboer B. ( 1995 ) The role of oxidative stress in neuropathy and other diabetic complications. Diabetes Metab. Rev. 11, 181 – 192.en_US
dc.identifier.citedreferencevan Dam P. S., Van Asbeck B. S., Bravenboer B., Van Oirschot J. F., Gispen W. H. and Marx J. J. ( 1998 ) Nerve function and oxidative stress in diabetic and vitamin E-deficient rats. Free Radic. Biol. Med. 24, 18 – 26.en_US
dc.identifier.citedreferencevan Dam P. S., Van Asbeck B. S., Bravenboer B., Van Oirschot J. F., Marx J. J. and Gispen W. H. ( 1999 ) Nerve conduction and antioxidant levels in experimentally diabetic rats: effects of streptozotocin dose and diabetes duration. Metabolism 48, 442 – 447.en_US
dc.identifier.citedreferencevan Dam P. S., Van Asbeck B. S., Van Oirschot J. F., Biessels G. J., Hamers F. P. and Marx J. J. ( 2001 ) Glutathione and alpha-lipoate in diabetic rats: nerve function, blood flow and oxidative state. Eur. J. Clin. Invest. 31, 417 – 424.en_US
dc.identifier.citedreferenceDe Blasi A., Conn P. J., Pin J. and Nicoletti F. ( 2001 ) Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol. Sci. 22, 114 – 120.en_US
dc.identifier.citedreferenceDelaney C. L., Russell J. W., Cheng H.-L. and Feldman E. L. ( 2001 ) Insulin-like growth factor-I and over-expression of Bcl-xL prevent glucose-mediated apoptosis in Schwann cells. J. Neuropathol. Exp. Neurol. 60, 147 – 160.en_US
dc.identifier.citedreferenceDeng W., Wang H., Rosenberg P. A., Volpe J. J. and Jensen F. E. ( 2004 ) Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. Proc. Natl Acad. Sci. USA 101, 7751 – 7756.en_US
dc.identifier.citedreferenceDringen R., Pfeiffer B. and Hamprecht B. ( 1999 ) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J. Neurosci. 19, 562 – 569.en_US
dc.identifier.citedreferenceDringen R., Gutterer J. M. and Hirrlinger J. ( 2000 ) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur. J. Biochem. 267, 4912 – 4916.en_US
dc.identifier.citedreferenceDyck P. J., Kratz K. M., Karnes J. L., Litchy W. J., Klein R., Pach J. M., Wilson D. M., O’Brien P. C. and Melton L. J. III ( 1993 ) The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: The Rochester Diabetic Neuropathy Study. Neurology 43, 817 – 824.en_US
dc.identifier.citedreferenceFernandez-Checa J. C. and Kaplowitz N. ( 1990 ) The use of monochlorobimane to determine hepatic GSH levels and synthesis. Anal. Biochem. 190, 212 – 219.en_US
dc.identifier.citedreferenceFujimura M., Morita-Fujimura Y., Kawase M., Copin J. C., Calagui B., Epstein C. J. and Chan P. H. ( 1999 ) Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J. Neurosci. 19, 3414 – 3422.en_US
dc.identifier.citedreferenceGegg M. E., Clark J. B. and Heales S. J. ( 2005 ) Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity. Brain Res. 1036, 1 – 6.en_US
dc.identifier.citedreferenceGhezzi P., Bonetto V. and Fratelli M. ( 2005 ) Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation. Antioxid. Redox Signal. 7, 964 – 972.en_US
dc.identifier.citedreferenceGil-del Valle L., de la C. M., Toledo A., Vilaro N., Tapanes R. and Otero M. A. ( 2005 ) Altered redox status in patients with diabetes mellitus type I. Pharmacol. Res. 51, 375 – 380.en_US
dc.identifier.citedreferenceHalliwell B. ( 2000 ) The antioxidant paradox. Lancet 355, 1179 – 1180.en_US
dc.identifier.citedreferenceHalliwell B. ( 2003 ) Oxidative stress in cell culture: an under-appreciated problem? FEBS Lett. 540, 3 – 6.en_US
dc.identifier.citedreferenceHohman T. C., Banis D., Basso M., Cotter M. A. and Cameron N. E. ( 1997 ) Resistance to increased oxidative stress is decreased in experimental diabetic neuropathy. J. Peripher. Nerv. Syst. 2, 272.en_US
dc.identifier.citedreferenceHua Long L. and Halliwell B. ( 2001 ) Oxidation and generation of hydrogen peroxide by thiol compounds in commonly used cell culture media. Biochem. Biophys. Res. Commun. 286, 991 – 994.en_US
dc.identifier.citedreferenceHuang T. J., Price S. A., Chilton L., Calcutt N. A., Tomlinson D. R., Verkhratsky A. and Fernyhough P. ( 2003 ) Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes 52, 2129 – 2136.en_US
dc.identifier.citedreferenceKeelan J., Allen N. J., Antcliffe D., Pal S. and Duchen M. R. ( 2001 ) Quantitative imaging of glutathione in hippocampal neurons and glia in culture using monochlorobimane. J. Neurosci. Res. 66, 873 – 884.en_US
dc.identifier.citedreferenceKishi M., Tanabe J., Schmelzer J. D. and Low P. A. ( 2002 ) Morphometry of dorsal root ganglion in chronic experimental diabetic neuropathy. Diabetes 51, 819 – 824.en_US
dc.identifier.citedreferenceLin S. H. and Maiese K. ( 2001 ) The metabotropic glutamate receptor system protects against ischemic free radical programmed cell death in rat brain endothelial cells. J. Cereb. Blood Flow Metab. 21, 262 – 275.en_US
dc.identifier.citedreferenceLow P. A., Nickander K. K. and Tritschler H. J. ( 1997 ) The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes 46 ( Suppl. 2 ), S38 – S42.en_US
dc.identifier.citedreferenceMaiese K. and Vincent A. M. ( 1999 ) Group I metabotropic receptors down-regulate nitric oxide induced caspase-3 activity in rat hippocampal neurons. Neurosci. Lett. 264, 17 – 20.en_US
dc.identifier.citedreferenceMaiese K., Vincent A., Lin S. H. and Shaw T. ( 2000 ) Group I and group III metabotropic glutamate receptor subtypes provide enhanced neuroprotection. J. Neurosci. Res. 62, 257 – 272.en_US
dc.identifier.citedreferenceMaritim A. C., Sanders R. A. and Watkins J. B. III ( 2003 ) Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol. 17, 24 – 38.en_US
dc.identifier.citedreferenceMelendez R. I., Vuthiganon J. and Kalivas P. W. ( 2005 ) Regulation of extracellular glutamate in the prefrontal cortex: focus on the cystine glutamate exchanger and group I metabotropic glutamate receptors. J. Pharmacol. Exp. Ther. 314, 139 – 147.en_US
dc.identifier.citedreferenceMoran M. M., McFarland K., Melendez R. I., Kalivas P. W. and Seamans J. K. ( 2005 ) Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J. Neurosci. 25, 6389 – 6393.en_US
dc.identifier.citedreferenceNagamatsu M., Nickander K. K., Schmelzer J. D., Raya A., Wittrock D. A., Trischler H. and Low P. A. ( 1995 ) Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care 18, 1160 – 1167.en_US
dc.identifier.citedreferenceNiedowicz D. M. and Daleke D. L. ( 2005 ) The role of oxidative stress in diabetic complications. Cell. Biochem. Biophys. 43, 289 – 330.en_US
dc.identifier.citedreferenceObrosova I. G. ( 2002 ) How does glucose generate oxidative stress in peripheral nerve? Int. Rev. Neurobiol. 50, 3 – 35.en_US
dc.identifier.citedreferencePizzi M., Benarese M., Boroni F., Goffi F., Valerio A. and Spano P. F. ( 2000 ) Neuroprotection by metabotropic glutamate receptor agonists on kainate-induced degeneration of motor neurons in spinal cord slices from adult rat. Neuropharmacology 39, 903 – 910.en_US
dc.identifier.citedreferenceRice M. E. and Russo-Menna I. ( 1998 ) Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience 82, 1213 – 1223.en_US
dc.identifier.citedreferenceRussell J. W. and Feldman E. L. ( 1999 ) Insulin-like growth factor-I prevents apoptosis in sympathetic neurons exposed to high glucose. Horm. Metab. Res. 31, 90 – 96.en_US
dc.identifier.citedreferenceRussell J. W. and Kaminsky A. J. ( 2005 ) Oxidative injury in diabetic neuropathy, in Nutrition and Diabetes: Pathophysiology and Management ( Opara E., ed. ), pp. 381 – 397. Taylor & Francis, Boca Raton, FL.en_US
dc.identifier.citedreferenceRussell J. W., Sullivan K. A., Windebank A. J., Herrmann D. N. and Feldman E. L. ( 1999 ) Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol. Dis. 6, 347 – 363.en_US
dc.identifier.citedreferenceRussell J. W., Golovoy D., Vincent A. M., Mahendru P., Olzmann J. A., Mentzer A. and Feldman E. L. ( 2002 ) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J. 16, 1738 – 1748.en_US
dc.identifier.citedreferenceSagara J. I., Miura K. and Bannai S. ( 1993 ) Maintenance of neuronal glutathione by glial cells. J. Neurochem. 61, 1672 – 1676.en_US
dc.identifier.citedreferenceSasaki H., Schmelzer J. D., Zollman P. J. and Low P. A. ( 1997 ) Neuropathology and blood flow of nerve, spinal roots and dorsal root ganglia in longstanding diabetic rats. Acta Neuropathol. 93, 118 – 128.en_US
dc.identifier.citedreferenceSchmeichel A. M., Schmelzer J. D. and Low P. A. ( 2003 ) Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 52, 165 – 171.en_US
dc.identifier.citedreferenceSchoepp D. D., Jane D. E. and Monn J. A. ( 1999 ) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38, 1431 – 1476.en_US
dc.identifier.citedreferenceSebastia J., Cristofol R., Martin M., Rodriguez-Farre E. and Sanfeliu C. ( 2003 ) Evaluation of fluorescent dyes for measuring intracellular glutathione content in primary cultures of human neurons and neuroblastoma SH-SY5Y. Cytometry A 51, 16 – 25.en_US
dc.identifier.citedreferenceSrinivasan S., Stevens M. J. and Wiley J. W. ( 2000 ) Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes 49, 1932 – 1938.en_US
dc.identifier.citedreferenceStevens M. J., Obrosova I., Cao X., Van Huysen C. and Greene D. A. ( 2000 ) Effects of dl-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 49, 1006 – 1015.en_US
dc.identifier.citedreferenceSuzuki T., Sekido H., Kato N., Nakayama Y. and Yabe-Nishimura C. ( 2004 ) Neurotrophin-3-induced production of nerve growth factor is suppressed in Schwann cells exposed to high glucose: involvement of the polyol pathway. J. Neurochem. 91, 1430 – 1438.en_US
dc.identifier.citedreferenceTachi Y., Okuda Y., Bannai C., Okamura N., Bannai S. and Yamashita K. ( 1998 ) High concentration of glucose causes impairment of the function of the glutathione redox cycle in human vascular smooth muscle cells. FEBS Lett. 421, 19 – 22.en_US
dc.identifier.citedreferenceTang X. C. and Kalivas P. W. ( 2003 ) Bidirectional modulation of cystine/glutamate exchanger activity in cultured cortical astrocytes. Ann. N. Y. Acad. Sci. 1003, 472 – 475.en_US
dc.identifier.citedreferenceThomas A. G., Vornov J. J., Olkowski J. L., Merion A. T. and Slusher B. S. ( 2000 ) N -Acetylated alpha-linked acidic dipeptidase converts N -acetylaspartylglutamate from a neuroprotectant to a neurotoxin. J. Pharmacol. Exp. Ther. 295, 16 – 22.en_US
dc.identifier.citedreferenceThomas A. G., Olkowski J. L. and Slusher B. S. ( 2001 ) Neuroprotection afforded by NAAG and NAALADase inhibition requires glial cells and metabotropic glutamate receptor activation. Eur. J. Pharmacol. 426, 35 – 38.en_US
dc.identifier.citedreferenceThomas A. G., Corse A. M., Coccia C. F., Bilak M. M., Rothstein J. D. and Slusher B. S. ( 2003 ) NAALADase inhibition protects motor neurons against chronic glutamate toxicity. Eur. J. Pharmacol. 471, 177 – 184.en_US
dc.identifier.citedreferenceTomlinson D. R. ( 1998 ) Future prevention and treatment of diabetic neuropathy. Diabetes Metab. 24 ( Suppl. 3 ), 79 – 83.en_US
dc.identifier.citedreferenceVincent A. M. and Maiese K. ( 2000 ) The metabotropic glutamate system promotes neuronal survival through distinct pathways of programmed cell death. Exp. Neurol. 166, 65 – 82.en_US
dc.identifier.citedreferenceVincent A. M., Mohammad Y., Ahmad I., Greenberg R. and Maiese K. ( 1997 ) Metabotropic glutamate receptors prevent nitric oxide-induced programmed cell death. J. Neurosci. Res. 50, 549 – 564.en_US
dc.identifier.citedreferenceVincent A. M., Brownlee M. and Russell J. W. ( 2002 ) Oxidative stress and programmed cell death in diabetic neuropathy. Ann. N. Y. Acad. Sci. 959, 368 – 383.en_US
dc.identifier.citedreferenceVincent A. M., Olzmann J. A., Brownlee M., Sivitz W. I. and Russell J. W. ( 2004a ) Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes 53, 726 – 734.en_US
dc.identifier.citedreferenceVincent A. M., Russell J. W., Low P. and Feldman E. L. ( 2004b ) Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev. 25, 612 – 628.en_US
dc.identifier.citedreferenceWroblewska B., Wroblewski J. T., Saab O. H. and Neale J. H. ( 1993 ) N -Acetylaspartylglutamate inhibits forskolin-stimulated cyclic AMP levels via a metabotropic glutamate receptor in cultured cerebellar granule cells. J. Neurochem. 61, 943 – 948.en_US
dc.identifier.citedreferenceWroblewska B., Wroblewski J. T., Pshenichkin S., Surin A., Sullivan S. E. and Neale J. H. ( 1997 ) N -Acetylaspartylglutamate selectively activates mGluR3 receptors in transfected cells. J. Neurochem. 69, 174 – 181.en_US
dc.identifier.citedreferenceXi Z. X., Baker D. A., Shen H., Carson D. S. and Kalivas P. W. ( 2002 ) Group II metabotropic glutamate receptors modulate extracellular glutamate in the nucleus accumbens. J. Pharmacol. Exp. Ther. 300, 162 – 171.en_US
dc.identifier.citedreferenceYao H. H., Ding J. H., Zhou F., Wang F., Hu L. F., Sun T. and Hu G. ( 2005 ) Enhancement of glutamate uptake mediates the neuroprotection exerted by activating group II or III metabotropic glutamate receptors on astrocytes. J. Neurochem. 92, 948 – 961.en_US
dc.identifier.citedreferenceZhang W., Slusher B., Murakawa Y., Wozniak K. M., Tsukamoto T., Jackson P. F. and Sima A. A. ( 2002 ) GCPII (NAALADase) inhibition prevents long-term diabetic neuropathy in type 1 diabetic BB/Wor rats. J. Neurol. Sci. 194, 21 – 28.en_US
dc.identifier.citedreferenceZhong C., Zhao X., Sarva J., Kozikowski A., Neale J. H. and Lyeth B. G. ( 2005 ) NAAG peptidase inhibitor reduces acute neuronal degeneration and astrocyte damage following lateral fluid percussion TBI in rats. J. Neurotrauma 22, 266 – 276.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.