Modeling Organic Contaminant Partitioning in Ground-Water Systems
dc.contributor.author | Miller, Cass T. | en_US |
dc.contributor.author | Weber, Walter J. | en_US |
dc.date.accessioned | 2010-04-01T15:21:08Z | |
dc.date.available | 2010-04-01T15:21:08Z | |
dc.date.issued | 1984-09 | en_US |
dc.identifier.citation | Miller, Cass T.; Weber, Walter J. (1984). "Modeling Organic Contaminant Partitioning in Ground-Water Systems." Ground Water 22(5): 584-592. <http://hdl.handle.net/2027.42/65827> | en_US |
dc.identifier.issn | 0017-467X | en_US |
dc.identifier.issn | 1745-6584 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/65827 | |
dc.description.abstract | Effective management of a ground-water system requires description and prediction of the transport and fate of contaminants in that system. This can be facilitated by using mathematical models which accurately represent the physical phenomena operative in the system. One of the most significant phenomena impacting the transport of many organic pollutants is partitioning between the solid (soil) and aqueous (ground-water) phases. The tendency of a contaminant to partition may be roughly approximated from measurements of such constitutive properties as the octanol: water partition coefficient of the contaminant and organic carbon content of the soil. Such rough approximations provide a basis for cursory appraisal, but are inadequate for quantitative system descriptions, particularly where nonlinear equilibrium sorption, kinetically dependent partitioning, or irreversible and/or hysteretic phase distribution phenomena are operative. Accurate simulation of solute transport frequently requires the incorporation of kinetic parameters and/or a nonlinear isotherm relationship to define transport phenomena in the fundamental equations governing mass transport. Laboratory measurements may be utilized to assess sorptive factors of importance, kinetic properties of an organic solute and a soil system, and equilibrium partitioning relationships. Such measurements can be utilized to provide more accurate modeling of contaminant transport. | en_US |
dc.format.extent | 699853 bytes | |
dc.format.extent | 3110 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.rights | 1984 National Ground Water Association | en_US |
dc.title | Modeling Organic Contaminant Partitioning in Ground-Water Systems | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Natural Resources and Environment | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Research Associate and Professor, respectively, Environmental Engineering Program, The University of Michigan, Ann Arbor, Michigan 48109. | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/65827/1/j.1745-6584.1984.tb01429.x.pdf | |
dc.identifier.doi | 10.1111/j.1745-6584.1984.tb01429.x | en_US |
dc.identifier.source | Ground Water | en_US |
dc.identifier.citedreference | Anderson, M. P. 1979. Using models to simulate the movement of contaminants through groundwater flow systems. In : CRC Critical Reviews in Environmental Control, v. 9, no. 2, pp. 97 – 156. | en_US |
dc.identifier.citedreference | Back, W. and J. A. Cherry. 1976. Chemical aspects of present and future hydrogeologic problems. In : Advances in Groundwater Hydrology. American Water Resources Association. ( edited by Z. A. Saleem ) pp. 153 – 172. | en_US |
dc.identifier.citedreference | Bailey, G. W. and J. L. White. 1970. Factors influencing the adsorption, desorption, and movement of pesticides in soil. Residue Review. ( edited by F. A. Gunther and J. D. Gunther ) v. 32, pp. 29 – 92. | en_US |
dc.identifier.citedreference | Banerjee, S., S. H. Yalkowsky, and S. C. Valvani. 1980. Water solubility and octanol/water partitition coefficients of organics limitations of the solubility-partition coefficient correlation. Environmental Science & Technology, v. 14, no. 10, pp. 1227 – 1229. | en_US |
dc.identifier.citedreference | Bear, J. 1979. Hydraulics of Groundwater. McGraw-Hill Book Co., New York. | en_US |
dc.identifier.citedreference | Boucher, F. R. and G. F. Lee. 1972. Adsorption of lindane and dieldrin pesticides on unconsolidated aquifer sands. Environmental Science & Technology. v. 6, no. 6, pp. 538 – 543. | en_US |
dc.identifier.citedreference | Brown, D. S. and E. W. Flagg. 1981. Empirical prediction of organic pollutant sorption in natural sediments. J. Environ. Qual. v. 10, no. 3, pp. 382 – 386. | en_US |
dc.identifier.citedreference | Cameron, D. R. and A. Klute. 1977. Convective-dispersive solute transport with a combined equilibrium and kinetic adsorption model. Water Resources Research. v. 13, no. 1, pp. 183 – 188. | en_US |
dc.identifier.citedreference | Carringer, R. D., J. B. Weber, and T. J. Monaco. 1975. Adsorption-desorption of selected pesticides by organic matter and montmorillonite. J. Agr. Food Chem. v. 23, no. 3, pp. 568 – 572. | en_US |
dc.identifier.citedreference | Crittenden, J. C. and W. J. Weber, Jr. 1978. Model for design of multicomponent adsorption systems. J. of the Environmental Engineering Division, ASCE. v. 104, no. EE6, Proc. Paper 14230, pp. 1175 – 1195. | en_US |
dc.identifier.citedreference | DiToro, D. M. and L. M. Horzempa. 1982. Reversible and resistant components of PCB adsorption-desorption: isotherms. Environmental Science & Technology, v. 16, no. 9, pp. 594 – 602. | en_US |
dc.identifier.citedreference | Enfield, C. G., R. F. Carsel, S. Z. Cohen, T. Phan, and D. M. Walters. 1982. Approximating pollutant transport to ground water. Ground Water, v. 20, no. 6, pp. 711 – 722. | en_US |
dc.identifier.citedreference | Faust, C. R. and J. W. Mercer. 1980. Ground-water modeling: recent developments. Ground Water. v. 18, no. 6, pp. 569 – 577. | en_US |
dc.identifier.citedreference | Freeze, R. A. and J. A. Cherry. 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, N.J. 604 pp. | en_US |
dc.identifier.citedreference | Hamaker, J. W. and J. M. Thompson. 1972. Adsorption. In : Organic Chemicals in the Soil Environment, Vol. 1. ( edited by C.A.I. Goring and J. W. Hamaker ) Marcel Dekker, Inc., New York. pp. 49 – 143. | en_US |
dc.identifier.citedreference | Hansch, C. and A. J. Leo. 1979. Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley-Interscience, New York. 339 pp. | en_US |
dc.identifier.citedreference | Karickhoff, S. W., D. S. Brown, and T. A. Scott. 1979. Sorption of hydrophobic pollutants in natural sediments. Water Research, v. 13, pp. 231 – 248. | en_US |
dc.identifier.citedreference | Karickhoff, S. W. 1980. Sorption kinetics of hydrophobic pollutants in natural sediments. In : Contaminants and Sediments, Vol. 2. ( edited by R. A. Baked ) Ann Arbor Science, Ann Arbor, MI pp. 193 – 205. | en_US |
dc.identifier.citedreference | Kay, B. D. and D. E. Elrick. 1967. Adsorption and movement of lindane in soils. Soil Science. v. 104, no. 5, pp. 314 – 322. | en_US |
dc.identifier.citedreference | Kenaga, E. E. and C.A.I. Goring. 1980. Relationship between water solubility, soil sorption, octanol-water partitioning, and concentrations of chemicals in biota. Aquatic Toxicology. ( edited by J. G. Eaton, P. R. Parrish, and A. C. Hendricks ) pp. 78 – 115. | en_US |
dc.identifier.citedreference | Leenheer, J. A. and J. L. Ahlrichs. 1971. A kinetic and equilibrium study of the adsorption of carbaryl and parathion upon soil organic matter surfaces. Soil Sci. Soc. Amer. Proc. v. 35, pp. 700 – 705. | en_US |
dc.identifier.citedreference | Leo, A., C. Hansch, and D. Elkins. 1971. Partition coefficients and their uses. Chemical Reviews, v. 71, no. 6, pp. 525 – 553. | en_US |
dc.identifier.citedreference | Lindstrom, F. T., R. Haque, and W. R. Coshow. 1970. Adsorption from solution III. A new model for the kinetics of adsorption-desorption processes. Journal of Physical Chemistry. v. 73, no. 3, pp. 495 – 502. | en_US |
dc.identifier.citedreference | Matheron, G. and G. de Marsily 1980. Is transport in porous media always diffusive? A counterexample. Water Resources Research, v. 16, no. 5, pp. 901 – 912. | en_US |
dc.identifier.citedreference | Miller, C. T. and W. J. Weber, Jr. 1983. Kinetic models for adsorption of organic solutes by granular soils. Presented at the 1983 Annual Meeting of the American Chemical Society, Washington, D.C. | en_US |
dc.identifier.citedreference | O'Connor, D. J. and J. P. Connolly. 1980. The effect of concentration of adsorbing solids on the partition coefficient. Water Research, v. 14, pp. 1517 – 1523. | en_US |
dc.identifier.citedreference | Oddson, J. K., J. Letey, and L. V. Weeks. 1970. Predicted distribution of organic chemicals in solution and adsorbed as a function of position and time for various chemical and soil properties. Soil Sci. Soc. Amer. Proc. v. 34, pp. 412 – 417. | en_US |
dc.identifier.citedreference | Prickett, T. A., T. C. Naymik, and C. G. Lonnquist. 1981. A “Random Walk” Solute Transport Model for Selected Groundwater Quality Evaluations. Illinois State Water Survey, Bulletin 65. 103 pp. | en_US |
dc.identifier.citedreference | Roberts, P. V., M. Reinhard, and A. J. Valocchi. 1982. Movement of organic contaminants in groundwater: implications for water supply. Journal AWWA. pp. 408 – 413. | en_US |
dc.identifier.citedreference | Sauty, J. P. 1980. An analysis of hydrodispersive transfer in aquifers. Water Resources Research, v. 16, no. 1, pp. 145 – 148. | en_US |
dc.identifier.citedreference | Swanson, R. A. and G. R. Dutt. 1973. Chemical and physical processes that affect atrazine and distribution in soil systems. Soil Sci. Soc. Amer. Proc. v. 37, pp. 872 – 876. | en_US |
dc.identifier.citedreference | Van Genuchten, M. Th., J. M. Davidson, and P. J. Wierenga. 1974. An evaluation of kinetic and equilibrium equations for the prediction of pesticide movement through porous media. Soil Sci. Soc. Am. J. v. 41, pp. 278 – 285. | en_US |
dc.identifier.citedreference | Verschueren, K. 1977. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York. 659 pp. | en_US |
dc.identifier.citedreference | Voice, T. C. 1982. Sorption of hydrophobic compounds by natural solid materials in aqueous environments. Ph.D. Dissertation, University of Michigan, Ann Arbor, MI. | en_US |
dc.identifier.citedreference | Weber, W. J., Jr. 1972. Physicochemical Processes for Water Quality Control. Wiley-Interscience, New York. 640 pp. | en_US |
dc.identifier.citedreference | Weber, W. J., Jr. and J. C. Crittenden. 1975. MADAM I — A numeric method for design of adsorptive systems. J. Water Pollution Control Federation, v. 47, no. 5, pp. 924 – 940. | en_US |
dc.identifier.citedreference | Weber, W. J., Jr., T. C. Voice, M. Pirbazari, G. Hunt, and D. M. Ulanoff. 1983. Sorption of hydrophobic compounds by sediments and suspended solids in aquatic systems, II: methods and pilot compound results. Water Research. (In press.). | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.