Show simple item record

Cholinergic Receptor-Mediated Phosphorylation and Activation of Tyrosine Hydroxylase in Cultured Bovine Adrenal Chromaffin Cells

dc.contributor.authorPocotte, Susan L.en_US
dc.contributor.authorHolz, Ronald W.en_US
dc.contributor.authorUeda, Tetsufumien_US
dc.date.accessioned2010-04-01T15:21:12Z
dc.date.available2010-04-01T15:21:12Z
dc.date.issued1986-02en_US
dc.identifier.citationPocotte, Susan L.; Holz, Ronald W.; Ueda, Tetsufumi (1986). "Cholinergic Receptor-Mediated Phosphorylation and Activation of Tyrosine Hydroxylase in Cultured Bovine Adrenal Chromaffin Cells." Journal of Neurochemistry 46(2): 610-622. <http://hdl.handle.net/2027.42/65828>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65828
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=2867129&dopt=citationen_US
dc.description.abstractWe have identified a 56-kilodalton protein in cultured bovine adrenal chromaffin cells that is phos-phorylated when catecholamine secretion is stimulated. Immunodetection on Western blots from both one- and two-dimensional polyacrylamide gels indicated that this protein was tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis. Two-dimensional polyacrylamide gel electrophoresis of proteins from unstimulated cells revealed small amounts of phosphorylated protein with a molecular weight of 56K and pI values of 6.37 and 6.27 which were subunits of tyrosine hydroxylase. Nicotinic stimulation of chromaffin cells caused the phosphorylation of three proteins of 56 kilodaltons with pI values of approximately 6.37, 6.27, and 6.15 which were tyrosine hydroxylase. The immunochemical analysis also revealed that there was unphosphorylated tyrosine hydroxylase 56 kilodaltons with a pI of 6.5 which may have decreased on nicotinic stimulation. The phosphorylation of tyrosine hydroxylase was associated with an increase in in situ conversion of [ 3 H]tyrosine to [ 3 H]dihydroxyphenylalanine ([ 3 H]DOPA). Muscarinic stimulation also caused phosphorylation of tyrosine hydroxylase, but to a smaller extent than did nicotinic stimulation. The secretagogues, elevated K + and Ba 2+ , stimulated phosphorylation of tyrosine hydroxylase and [ 3 H]DOPA production. The effects of nicotinic stimulation and elevated K + on tyrosine hydroxylase phosphorylation and [ 3 H]DOPA production were Ca 2+ -dependent. Nicotinic agonists also raised cyclic AMP levels in chromaffin cells after 2 min. Dibutyryl cyclic AMP and forskolin, which have little effect on catecholamine secretion, also caused phosphorylation of tyrosine hydroxylase. These stimulators of cyclic AMP-dependent processes caused the appearance of two phosphorylated subunits of tyrosine hydroxylase with pI values of 6.37 and 6.27. There was also a small amount of phosphorylated subunit with a pI of 6.15. Both agents stimulated [ 3 H]DOPA production. The experiments indicate that tyrosine hydroxylase is phosphorylated and activated when chromaffin cells are stimulated to secrete. The data suggest that the earliest phosphorylation of tyrosine hydroxylase induced by a nicotinic agonist occurs through stimulation of a Ca 2+ -dependent protein kinase. After 2 min phosphorylation by a cyclic AMP-dependent protein kinase may also occur. Phosphorylation of tyrosine hydroxylase is associated with an increase in in situ tyrosine hydroxylase activity.en_US
dc.format.extent2013070 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1986 International Society for Neurochemistryen_US
dc.subject.otherTyrosine Hydroxylaseen_US
dc.subject.otherCholinergic Receptoren_US
dc.subject.other3,4-Dihydroxyphenylalanineen_US
dc.subject.otherCyclic AMPen_US
dc.subject.otherPhosphorylationen_US
dc.subject.otherBovine Adrenal Chromaffin Cellsen_US
dc.titleCholinergic Receptor-Mediated Phosphorylation and Activation of Tyrosine Hydroxylase in Cultured Bovine Adrenal Chromaffin Cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Pharmacology University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationum* The Mental Health Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid2867129en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65828/1/j.1471-4159.1986.tb13011.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1986.tb13011.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAlbert K. A., Helmer-Matyjek E., Nairn A. C., Muller T. H., Haycock J. W., Greene L. A., Goldstein M., and Greengard P. ( 1984 ) Calcium/phospholipid-dependent protein kinase (protein kinase C) phosphorylates and activates tyrosine hy-droxylase. Proc. Natl. Acad. Sci. USA 81, 7713 – 7717.en_US
dc.identifier.citedreferenceAmy C. M. and Kirshner N. ( 1981 ) Phosphorylation of adrenal medulla cell proteins in conjunction with stimulation of catecholamine secretion. J. Neurochem. 36, 847 – 854.en_US
dc.identifier.citedreferenceBradford M. M. ( 1976 ) A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248 – 254.en_US
dc.identifier.citedreferenceChalfie M. and Perlman R. L. ( 1977 ) Regulation of catecholamine biosynthesis in a transplantable rat pheochromocytoma. J. Pharmacol. Exp. Tker. 200, 588 – 596.en_US
dc.identifier.citedreferenceCloutier G. and Weiner N. ( 1973 ) Further studies on the increased synthesis of norepinephrine during nerve stimulation of guinea pig vas deferens preparation: effect of tyrosine and 6,7-dimethyltetrahydropterin. J. Pharmacol. Exp. Ther. 186, 75 – 84.en_US
dc.identifier.citedreferenceFisher S. K., Holz R. W., and Agranoff B. W. ( 1981 ) Muscarinic receptors in chromaffin cell cultures mediate enhanced phospholipid labeling but not catecholamine secretion. J. Neurochem. 37, 491 – 497.en_US
dc.identifier.citedreferenceGarrison J. C. and Wagner J. D. ( 1982 ) Glucagon and the Ca 2+ linked hormones angiotensin II, norepinephrine, and vasopressin stimulate the phosphorylation of distinct substrates in intact hepatocytes. J. Biol. Chem. 257, 13135 – 13143.en_US
dc.identifier.citedreferenceHaycock J. W., Meligeni J. A., Bennett W. F., and Waymire J. C. ( 1982a ) Phosphorylation and activation of tyrosine hydroxylase mediate the acetylcholine-induced increase in catecholamine biosynthesis in adrenal chromaffin cells. J. Biol. Chem. 257, 12641 – 12648.en_US
dc.identifier.citedreferenceHaycock J. W., Meiigeni J. A., Bennett W. F., and Waymire J. C. ( 1982b ) Multiple site phosphorylation of tyrosine hy-droxlase. Differential regulation in situ by 8-bromo-cAMP and acetylcholine. J. Biol. Chem. 257, 13699 – 13703.en_US
dc.identifier.citedreferenceHolz R. W., Rothwell C. E., and Ueda T. ( 1980 ) Cholinergic agonist-stimulated phosphorylation of two specific proteins in bovine chromaffin cells: Correlation with catecholamine secretion. Soc. Neurosci. Abstr. 6, 177.en_US
dc.identifier.citedreferenceHolz R. W., Senter R. A., and Frye R. A. ( 1982 ) Relationship between Ca 2+ uptake and catecholamine secretion in primary dissociation cultures of adrenal medulla. J. Neurochem. 39, 635 – 646.en_US
dc.identifier.citedreferenceHorwitz J. and Perlman R. L. ( 1984 ) Stimulation of DOPA synthesis in the superior cervical ganglion by veratridine. J. Neurochem. 42, 384 – 389.en_US
dc.identifier.citedreferenceHorwitz J., Tsymbalou S., and Perlman R. L. ( 1984 ) Muscarine increases tyrosine 3-monooxygenase activity and phospholipid metabolism in the superior cervical ganglion of the rat. J. Pharmacol. Exp. Ther. 229, 577 – 582.en_US
dc.identifier.citedreferenceJoh T. H., Park D. H., and Reis D. J. ( 1978 ) Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: mechanism of enzyme activation. Proc. Natl. Acad. Sci. USA 75, 4744 – 4748.en_US
dc.identifier.citedreferenceKilpatrick D. L., Slepetis R. J., Corcoran J. J., and Kirshner N. ( 1982 ) Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J. Neurochem. 38, 427 – 435.en_US
dc.identifier.citedreferenceKnight D. E. and Kesteven N. T. ( 1983 ) Evoked transient intracellular free Ca 2+ changes and secretion in isolated bovine adrenal medullary cells. Proc. R. Soc. Land. [Biol.] 218, 177 – 179.en_US
dc.identifier.citedreferenceMeligeni J. A., Haycock, J. W., Bennett W. R., and Waymire J. C. ( 1982 ) Phosphorylation and activation of tyrosine hydroxylase mediate the cAMP-induced increase in catecholamine biosynthesis in adrenal chromaffin cells. J. Biol. Chem. 257, 12632 – 12640.en_US
dc.identifier.citedreferenceNagatsu T., Levitt M., and Udenfriend S. ( 1964 ) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J. Biol. Chem. 239, 2910 – 2917.en_US
dc.identifier.citedreferenceNiggli V., Knight D. E., Baker P. F., Vigny A., and Henry J.-P. ( 1984 ) Tyrosine hydroxylase in “leaky” adrenal medullary cells: evidence for in situ phosphorylation by separate Ca 2+ and cyclic AMP-dependent systems. J. Neurochem. 43, 646 – 658.en_US
dc.identifier.citedreferenceNishizuka Y. ( 1984 ) Turnover of inositol phospholipids and signal transduction. Science 225, 1365 – 1370.en_US
dc.identifier.citedreferenceO'Farrell P. H. ( 1975 ) High resolution of two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007 – 4021.en_US
dc.identifier.citedreferencePocotte S. L. and Holz R. W. ( 1986 ) Effects of phorbol ester on tyrosine hydroxylase phosphorylation and activation in cultured bovine adrenal chromaffin cells. J. Biol. Chem. ( in press ).en_US
dc.identifier.citedreferencePocotte S. L., Frye R. A., Senter R. A., TerBush D. R., Lee S. A., and Holz R. W. ( 1985 ) Effects of phorbol ester on catecholamine secretion and protein phosphorylation in adrenal medullary cell cultures. Proc. Natl. Acad. Sci. USA 82, 930 – 934.en_US
dc.identifier.citedreferenceRaese J. D., Edelman A. M., Lazar M. A., and Barchas J. D. ( 1977 ) Bovine striatal tyrosine hydroxylase: multiple forms and evidence for phosphorylation by cyclic AMP-dependent protein kinase, in Structure and Function of Monoamine Enzymes ( Usdin E., Weiner N., and Youdim M. B. H., eds ), pp. 383 – 400. Marcel Dekker, New York.en_US
dc.identifier.citedreferenceTowbin H., Staehelin T., and Gordon J. ( 1979 ) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350 – 4354.en_US
dc.identifier.citedreferenceUeda T. and Greengard P. ( 1977 ) Adenosine 3′,5′-monophosphate-regulated phosphoprotein system of neuronal membranes. I. Solubilization, purification, and some properties of an endogenous phosphoprotein. J. Biol. Chem. 252, 5155 – 5163.en_US
dc.identifier.citedreferenceUeda T., Maeno H., and Greengard P. ( 1973 ) Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3′:5′-monophosphate. J. Biol. Chem. 248, 8295 – 8305.en_US
dc.identifier.citedreferenceVulliet P. R., Langan T. A., and Weiner N. ( 1980 ) Tyrosine hydroxylase: a substrate of cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 77, 92 – 96.en_US
dc.identifier.citedreferenceVulliet P. R., Woodgett J. R., and Cohen P. ( 1984 ) Phosphorylation of tyrosine hydroxylase by calmodulin-dependent multiprotein kinase. J. Biol. Chem. 259, 13680 – 13683.en_US
dc.identifier.citedreferenceWilson J. M., Daddona P. E., Simmonds H. A., VanAcker K. J., and Kelley W. N. ( 1982 ) Human adenine phosphoriboxyl transferase. Immunochemical quantitation and protein blot analysis of mutant forms of the enzyme. J. Biol. Chem. 257, 1508 – 1515.en_US
dc.identifier.citedreferenceYamauchi T. and Fujisawa H. ( 1979 ) In vitro phosphorylation of bovine adrenal tyrosine hydroxylase by adenosine 3′,5′-monophosphate-dependent protein kinase. J. Biol. Chem. 254, 503 – 507.en_US
dc.identifier.citedreferenceYamauchi T., Nakata H., and Fujisawa H. ( 1981 ) A new activator protein that activates tryptophan S-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca 2+, calmodulin-dependent protein kinase. J. Biol. Chem. 256, 5404 – 5409.en_US
dc.identifier.citedreferenceYanagihara N., Tank A. W., and Weiner N. ( 1983 ) Relationship between activation and phosphorylation of tyrosine hydroxylase by 56 m M K + and dibutryl cAMP in PC 12 cells in culture. FASEB Abstr. 42, 501.en_US
dc.identifier.citedreferenceYanagihara N., Tank A. W., and Weiner N. ( 1984 ) Relationship between activation and phosphorylation of tyrosine hydroxylase by 56 m M K + in PC12 cells in culture. Mol. Pharmacol. 26, 141 – 147.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.